SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murk Albertinka J) "

Sökning: WFRF:(Murk Albertinka J)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hamers, Timo, et al. (författare)
  • Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47).
  • 2008
  • Ingår i: Mol Nutr Food Res. - 1613-4125. ; 52:2, s. 284-298
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the endocrine-disrupting (ED) potency of metabolites from brominated flame retardants (BFRs) was determined. Metabolites were obtained by incubating single-parent compound BFRs with phenobarbital-induced rat liver microsomes. Incubation extracts were tested in seven in vitro bioassays for their potency to compete with thyroxine for binding to transthyretin (TTR), to inhibit estradiol-sulfotransferase (E2SULT), to interact with thyroid hormone-mediated cell proliferation, and to (in-)activate the androgen, progesterone, estrogen, or aryl hydrocarbon receptor. For most BFRs, TTR-binding potencies, and to a lesser extent E2SULT-inhibiting potencies, significantly increased after biotransformation. Microsomal incubation had less pronounced effects on other ED modes of action, due to low biotransformation efficiency and background activities determined in control incubations without BFRs. Moreover, cell-based bioassays suffered from cytotoxicity from metabolites of lower-brominated polybrominated diphenyl ethers. For the environmentally relevant 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), six hydroxylated metabolites were identified. Individual metabolites had TTR-binding and E2SULT-inhibiting potencies 160-1600 and 2.2-220 times higher than BDE-47 itself, whereas their combined potencies in a realistic mixture were well predicted via concentration addition. In combination with other environmentally relevant hydroxylated organohalogens acting on TTR-binding and E2SULT inhibition, internal exposure to BFR metabolites may significantly contribute to the overall risk of endocrine disruption.
  •  
3.
  • Hamers, Timo, et al. (författare)
  • In vitro profiling of the endocrine-disrupting potency of brominated flame retardants
  • 2006
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 92:1, s. 157-73
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Over the last few years, increasing evidence has become available that some brominated flame retardants (BFRs) may have endocrine-disrupting (ED) potencies. The goal of the current study was to perform a systematic in vitro screening of the ED potencies of BFRs (1) to elucidate possible modes of action of BFRs in man and wildlife and (2) to classify BFRs with similar profiles of ED potencies. A test set of 27 individual BFRs were selected, consisting of 19 polybrominated diphenyl ether congeners, tetrabromobisphenol-A, hexabromocyclododecane, 2,4,6-tribromophenol, ortho-hydroxylated brominated diphenyl ether 47, and tetrabromobisphenol-A–bis(2,3)dibromopropyl ether. All BFRs were tested for their potency to interact with the arylhydrocarbon receptor, androgen receptor (AR), progesterone receptor (PR), and estrogen receptor. In addition, all BFRs were tested for their potency to inhibit estradiol (sulfation by estradiol sulfotransferase (E2SULT), to interfere with thyroid hormone 3,3',5-triiodothyronine (T3)–mediated cell proliferation, and to compete with T3-precursor thyroxine for binding to the plasma transport protein transthyretin (TTR). The results of the in vitro screening indicated that BFRs have ED potencies, some of which had not or only marginally been described before (AR antagonism, PR antagonism, E2SULT inhibition, and potentiation of T3-mediated effects). For some BFRs, the potency to induce AR antagonism, E2SULT inhibition, and TTR competition was higher than for natural ligands or clinical drugs used as positive controls. Based on their similarity in ED profiles, BFRs were classified into five different clusters. These findings support further investigation of the potential ED effects of these environmentally relevant BFRs in man and wildlife.
  •  
4.
  • Lyche, Jan L., et al. (författare)
  • Reproductive and developmental toxicity of phthalates
  • 2009
  • Ingår i: Journal of toxicology and environmental health. Part B, Critical reviews. - : Informa UK Limited. - 1093-7404 .- 1521-6950. ; 12:4, s. 225-249
  • Tidskriftsartikel (refereegranskat)abstract
    • The purposes of this review are to (1) evaluate human and experimental evidence for adverse effects on reproduction and development in humans, produced by exposure to phthalates, and (2) identify knowledge gaps as for future studies. The widespread use of phthalates in consumer products leads to ubiquitous and constant exposure of humans to these chemicals. Phthalates were postulated to produce endocrine-disrupting effects in rodents, where fetal exposure to these compounds was found to induce developmental and reproductive toxicity. The adverse effects observed in rodent models raised concerns as to whether exposure to phthalates represents a potential health risk to humans. At present, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and butyl benzyl phthalate (BBP) have been demonstrated to produce reproductive and developmental toxicity; thus, this review focuses on these chemicals. For the general population, DEHP exposure is predominantly via food. The average concentrations of phthalates are highest in children and decrease with age. At present, DEHP exposures in the general population appear to be close to the tolerable daily intake (TDI), suggesting that at least some individuals exceed the TDI. In addition, specific high-risk groups exist with internal levels that are several orders of magnitude above average. Urinary metabolites used as biomarkers for the internal levels provide additional means to determine more specifically phthalate exposure levels in both general and high-risk populations. However, exposure data are not consistent and there are indications that secondary metabolites may be more accurate indicators of the internal exposure compared to primary metabolites. The present human toxicity data are not sufficient for evaluating the occurrence of reproductive effects following phthalate exposure in humans, based on existing relevant animal data. This is especially the case for data on female reproductive toxicity, which are scarce. Therefore, future research needs to focus on developmental and reproductive endpoints in humans. It should be noted that phthalates occur in mixtures but most toxicological information is based on single compounds. Thus, it is concluded that it is important to improve the knowledge of toxic interactions among the different chemicals and to develop measures for combined exposure to various groups of phthalates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy