SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muschitiello Francesco) "

Sökning: WFRF:(Muschitiello Francesco)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Muschitiello, Francesco, et al. (författare)
  • Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (similar to 13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snow-pack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.
  •  
2.
  • Muschitiello, Francesco, et al. (författare)
  • Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, similar to 12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100-12,880 years ago generates a hydroclimate dipole with drier-colder conditions in Northern Europe and wetter-warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting similar to 180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas.
  •  
3.
  • Pausata, Francesco S. R., et al. (författare)
  • Greening of the Sahara suppressed ENSO activity during the mid-Holocene
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of the El Nino-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.
  •  
4.
  • Ahmed, Engy, et al. (författare)
  • Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA
  • 2018
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 181, s. 19-29
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.
  •  
5.
  •  
6.
  • Davies, Frazer J., et al. (författare)
  • The impact of Sahara desertification on Arctic cooling during the Holocene
  • 2015
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 11:3, s. 571-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the start of the Holocene, temperatures in the Arctic have steadily declined. This has been accredited to the orbitally forced decrease in summer insolation reconstructed over the same period. However, here we present climate modelling results from an Earth model of intermediate complexity (EMIC) that indicate that 17–40% of the cooling in the Arctic, over the period 9–0 ka, was a direct result of the desertification that occurred in the Sahara after the termination of the African Humid Period. We have performed a suite of sensitivity experiments to analyse the impact of different combinations of forcings, including various vegetation covers in the Sahara. Our simulations suggest that over the course of the Holocene, a strong increase in surface albedo in the Sahara as a result of desertification led to a regional increase in surface pressure, a weakening of the trade winds, the westerlies and the polar easterlies, which in turn reduced the meridional heat transported by the atmosphere to the Arctic. We conclude that during interglacials, the climate of the Northern Hemisphere is sensitive to changes in Sahara vegetation type.
  •  
7.
  • Essell, Helen, et al. (författare)
  • A frequency-optimised temperature record for the Holocene
  • 2023
  • Ingår i: Environmental Research Letters. - 1748-9326. ; 18:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Existing global mean surface temperature reconstructions for the Holocene lack high-frequency variability that is essential for contextualising recent trends and extremes in the Earth's climate system. Here, we isolate and recombine archive-specific climate signals to generate a frequency-optimised record of interannual to multi-millennial temperature changes for the past 12 000 years. Average temperatures before ∼8000 years BP and after ∼4000 years BP were 0.26 (±2.84) °C and 0.07 (±2.11) °C cooler than the long-term mean (0–12 000 years BP), while the Holocene Climate Optimum ∼7000–4000 years BP was 0.40 (±1.86) °C warmer. Biased towards Northern Hemisphere summer temperatures, our multi-proxy record captures the spectral properties of transient Earth system model simulations for the same spatial and season domain. The new frequency-optimised trajectory emphasises the importance and complex interplay of natural climate forcing factors throughout the Holocene, with an approximation of the full range of past temperature changes providing novel insights for policymakers addressing the risks of recent anthropogenic warming.
  •  
8.
  • Martens, Jannik, et al. (författare)
  • Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon cycle models suggest that past warming events in the Arctic may have caused large-scale permafrost thaw and carbon remobilization, thus affecting atmospheric CO2 levels. However, observational records are sparse, preventing spatially extensive and time-continuous reconstructions of permafrost carbon release during the late Pleistocene and early Holocene. Using carbon isotopes and biomarkers, we demonstrate that the three most recent warming events recorded in Greenland ice cores-(i) Dansgaard-Oeschger event 3 (similar to 28 ka B.P.), (ii) Bolling-Allerod (14.7 to 12.9 ka B.P.), and (iii) early Holocene (similar to 11.7 ka B.P.)-caused massive remobilization and carbon degradation from permafrost across northeast Siberia. This amplified permafrost carbon release by one order of magnitude, particularly during the last deglaciation when global sea-level rise caused rapid flooding of the land area thereafter constituting the vast East Siberian Arctic Shelf. Demonstration of past warming-induced release of permafrost carbon provides a benchmark for the sensitivity of these large carbon pools to changing climate.
  •  
9.
  • Miller, Clint M., et al. (författare)
  • Pore water geochemistry along continental slopes north of the East Siberian Sea : inference of low methane concentrations
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:12, s. 2929-2953
  • Tidskriftsartikel (refereegranskat)abstract
    • Continental slopes north of the East Siberian Sea potentially hold large amounts of methane (CH4/in sediments as gas hydrate and free gas. Although release of this CH4 to the ocean and atmosphere has become a topic of discussion, the region remains sparingly explored. Here we present pore water chemistry results from 32 sediment cores taken during Leg 2 of the 2014 joint Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions (SWERUS-C3) expedition. The cores come from depth transects across the slope and rise extending between the Mendeleev and the Lomonosov ridges, north of Wrangel Island and the New Siberian Islands, respectively. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42-), alkalinity, and the delta C-13 of dissolved inorganic carbon (DIC), is negligible at all stations east of 143 degrees E longitude. In the upper 8m of these cores, downward SO42- flux never exceeds 6.2 mol m(-2) kyr(-1), the upward alkalinity flux never exceeds 6.8 mol m(-2) kyr(-1), and delta C-13 composition of DIC (delta C-13-DIC) only moderately decreases with depth (3.6% m 1 on average). Moreover, upon addition of Zn acetate to pore water samples, ZnS did not precipitate, indicating a lack of dissolved H2S. Phosphate, ammonium, and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment and supports very low organic carbon turnover rates. A single core on the Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9 and 11.3 mol m(-2) kyr(-1), respectively, the delta C-13-DIC gradient was 5.6% m(-1), and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that abundant CH4, including gas hydrates, do not characterize the East Siberian Sea slope or rise along the investigated depth transects. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based on assumption.
  •  
10.
  • Muschitiello, Francesco, et al. (författare)
  • Arctic climate response to the termination of the African Humid Period
  • 2015
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 125, s. 91-97
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's climate response to the rapid vegetation collapse at the termination of the African Humid Period (AHP) (5.5-5.0 kyr BP) is still lacking a comprehensive investigation. Here we discuss the sensitivity of mid-Holocene Arctic climate to changes in albedo brought by a rapid desertification of the Sahara. By comparing a network of surface temperature reconstructions with output from a coupled global climate model, we find that, through a system of land-atmosphere feedbacks, the end of the AHP reduced the atmospheric and oceanic poleward heat transport from tropical to high northern latitudes. This entails a general weakening of the mid-latitude Westerlies, which results in a shift towards cooling over the Arctic and North Atlantic regions, and a change from positive to negative Arctic Oscillation-like conditions. This mechanism would explain the sign of rapid hydro-climatic perturbations recorded in several reconstructions from high northern latitudes at 5.5-5.0 kyr BP, suggesting that these regions are sensitive to changes in Saharan land cover during the present interglacial. This is central in the debate surrounding Arctic climate amplification and future projections for subtropical precipitation changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28
Typ av publikation
tidskriftsartikel (23)
annan publikation (3)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Muschitiello, France ... (26)
Wohlfarth, Barbara (12)
O'Regan, Matt (7)
Smittenberg, Rienk H ... (6)
Jakobsson, Martin (6)
Pearce, Christof (4)
visa fler...
Pausata, Francesco S ... (3)
Andersson, August (3)
Semiletov, Igor (3)
Steinthorsdottir, Ma ... (3)
Nilsson, Andreas (2)
de Boer, Agatha M. (2)
Björck, Svante (2)
Gustafsson, Örjan (2)
Wohlfarth, Barbara, ... (2)
Schenk, Frederik (2)
Zhang, Qiong (2)
Blaauw, Maarten (2)
Greenwood, Sarah L. (2)
Moros, Matthias (2)
Davies, Siwan M. (1)
Wastegård, Stefan (1)
Kaufman, Darrell S. (1)
Unneberg, Per (1)
Semiletov, I. (1)
Wild, Birgit (1)
Backman, Jan (1)
Dickens, Gerald R. (1)
Hammarlund, Dan (1)
Kirchner, Nina (1)
Ahmed, Engy (1)
Parducci, Laura, 196 ... (1)
Ågren, Rasmus, 1982 (1)
Rattray, Jayne E. (1)
Han, Lu (1)
Pedersen, Mikkel W. (1)
Afrifa Yamoah, Kweku (1)
Slotte, Tanja (1)
Krusic, Paul J. (1)
Heikkilä, Maija (1)
Cronin, Thomas M. (1)
Jakobsson, Martin, 1 ... (1)
O'Regan, Matthew (1)
Mörth, Carl-Magnus (1)
Johansson, Arne, V., ... (1)
Büntgen, Ulf (1)
Esper, Jan (1)
Johansson, Carina (1)
Snowball, Ian (1)
Snowball, Ian, 1963- (1)
visa färre...
Lärosäte
Stockholms universitet (28)
Lunds universitet (3)
Uppsala universitet (2)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
Naturhistoriska riksmuseet (1)
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (28)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy