SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Music Denis) "

Sökning: WFRF:(Music Denis)

  • Resultat 1-10 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghda, Soheil Karimi, et al. (författare)
  • Ion kinetic energy- and ion flux-dependent mechanical properties and thermal stability of (Ti,Al)N thin films
  • 2023
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion-irradiation-induced changes in structure, elastic properties, and thermal stability of metastable c-(Ti,Al)N thin films synthesized by high-power pulsed magnetron sputtering (HPPMS) and cathodic arc deposition (CAD) are systematically investigated by experiments and density functional theory (DFT) simulations. While films deposited by HPPMS show a random orientation at ion kinetic energies (Ek)>105 eV, an evolution towards (111) orientation is observed in CAD films for Ek>144 eV. The measured ion energy flux at the growing film surface is 3.3 times larger for CAD compared to HPPMS. Hence, it is inferred that formation of the strong (111) texture in CAD films is caused by the ion flux-and ion energy-induced strain energy minimization in defective c-(Ti,Al)N. The ion energy-dependent elastic modulus can be rationalized by considering the ion energy-and orientation -dependent formation of point defects from DFT predictions: The balancing effects of bombardment-induced Frenkel defects formation and the concurrent evolution of compressive intrinsic stress result in the apparent independence of the elastic modulus from Ek for HPPMS films without preferential orientation. However, an ion energy-dependent elastic modulus reduction of similar to 18% for the CAD films can be understood by considering the 34% higher Frenkel pair concentration formed at Ek=182 eV upon irradiation of the experimentally observed (111)-oriented (Ti,Al)N in comparison to the (200)-configuration at similar Ek. Moreover, the effect of Frenkel pair concentration on the thermal stability of metastable c-(Ti,Al)N is investigated by differential scanning calorimetry: Ion-irradiation-induced increase in Frenkel pairs concentration retards the wurtzite formation temperature by up to 206 degrees C.
  •  
2.
  • Alami, Jones, et al. (författare)
  • Ion-assisted Physical Vapor Deposition for enhanced film properties on non-flat surfaces
  • 2005
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 23:2, s. 278-280
  • Tidskriftsartikel (refereegranskat)abstract
    • We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species.
  •  
3.
  • Carlsson, Adam (författare)
  • Computational prediction of novel MAB phases
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The synthesis procedure of any materials system is often considered a challenging task if performed without any prior knowledge. Theoretical models may thus be used as an external input and guide experimental efforts toward novel exotic materials which are most likely to be synthesizable. The aim of this work is to apply theoretical models and develop frameworks for reliable predictions of thermodynamically stable materials. The material in focus herein is the family of atomic layered boride-based materials referred to as MAB phases.The ground state energy of a material system may be obtained by applying firstprincipal calculations, such as density functional theory (DFT), which has thoroughly been used throughout this thesis. However, performing modern state-of-the-art quantum mechanical calculations, in general, relies on a pre-defined crystal structure which may be constructed based on an a priori known structure or obtained through the use of crystal structure prediction models. In this work, both approaches are explored. We herein perform a thermodynamical screening study to predict novel stable ternary boron-based materials by considering M2AB2, M3AB4, M4AB6, MAB and M4AB4 compositions in orthorhombic and hexagonal symmetries with inspiration from experimentally synthesized MAB phases. The considered atomic elements are M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, A = Al, Ga, In, and B is boron. Among the considered compounds, seven experimentally synthesized phases are verified as stable, and we predict the three hypothetical phases to be stable - Hf2InB2, Zr2InB2, and Mo4AlB4. Additionally, 23 phases of varying symmetries and compositions are predicted as close to stable or to be metastable.However, the assumption of assigning initial crystal structures based on neighbouring compounds may drastically limit the outcome of a screening study. State-of-the-art techniques to generate low energy crystal structures within the considered material phase space is thus explored. More specifically, the Mo-Sc-Al-B system is studied along the ternary joints of (MoxSc1-x)2AlB2 where 0 < x < 1 by using the cluster expansion (CE) and the crystal structure prediction (CSP) codes, CLEASE and USPEX, in analogy. Previous attempts to study the Mo-Sc-Al-B system has been limited by only considering either hexagonal or orthorhombic symmetries. We challenge such approaches by covering larger portions of the phase space efficiently by combining CSP and CE frameworks. The Mo4/3Sc2/3AlB2 (R ̅3m) phase, previously referred to as i-MAB, is verified stable in addition to Mo2/3Sc4/3AlB2 (R3).The suggested approach of combining CE and CSP frameworks for investigating multi-component systems consists of initially performing CSP searches on the systems of smaller order constituting the system in focus. In the pseudo-ternary (MoxSc1-x)2AlB2 system, this refers to performing CSP searches on the ternary Mo2AlB2 and Sc2AlB2 systems. In addition, we also consider the structures of experimentally known phases with similar compositions. The complete set of structures obtained either from CSP or public databases, was later used to design CE models where mixing tendencies in addition to stability determined which model to further study. The predicted low-energy structures of the CE model were relaxed and used as seed structures within a complete CSP search covering the (MoxSc1-x)2AlB2 system for 0 < x < 1. We demonstrate that the use of seed structures, obtained from CE models, efficiently improved the search for low-energy structures within a multi-component system. The suggested approach is yet to be tested on any other system but is applicable to any alternative multi-component system.
  •  
4.
  • Chang, Jui-Che (författare)
  • Metastable orthorhombic Ta3N5 thin films grown by magnetron sputter epitaxy
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The semiconductor tritantalum pentanitride (Ta3N5) is a promising green-energy material for photoelectrolyzing water to produce oxygen and hydrogen owing to its proper bandgap of 2.0 ± 0.2 eV and band positions to redox potential of water. Compare with the conventional setup of water splitting, such as TiO2, Fe2O3, Cu2O, and WO3, the Ta3N5 shows a proper band gap, which leads to a theoretical efficiency as high as 15.9%. However, the complexity of the Ta-N system and the metastability of the Ta3N5 result in the limited research of the growth of high quality stoichiometric Ta3N5.Conventionally, the two-step growth of oxidation and nitridation of a metal Ta using thermal annealing in oxygen and ammonia environment is used to produce the Ta3N5. However, the amount of incorporated oxygen in the Ta3N5 samples and film’s thickness and interface are hardly to be controlled, and the use of ammonia as the nitridation gas is harmful to the environment. Hence, in this thesis work, the reactive magnetron sputtering is used to synthesis the Ta3N5, which demonstrates some advantages, such as possibility to grow on a substrate with nanostructure on the surface, a simplification of growth process, usage of environmental-friendly reactive gas, and even scaling up to the industrial application.The thesis presents a successful growth of orthorhombic Ta3N5-type Ta-O-N compound thin films on Si and sapphire substrates, specifically Ta3-xN5-yOy, using reactive magnetron sputtering with a gas mixture of Ar, N2, and O2. In the deposition process, the total working pressure was increasing from 5 to 40 mTorr, while keeping same partial pressure ratio (Ar: N2: O2 = 3: 2: 0.1). When the total pressure in the region between 5-30 mTorr, a low-degree fiber-textural Ta3-xN5-yOy films were grown. In addition, with the characterization of elastic recoil detection analysis (ERDA), the atomic fraction of O, N, and Ta of as-grown Ta3-xN5-yOy films were found varying from 0.02 to 0.15, 0.66 to 0.54, and 0.33 to 0.31, respectively, which leads to a b-lattice constant decrease around 1.3 %, shown in X-ray diffraction (XRD) results. For a total working pressure up to 40 mTorr, an amorphous O-rich Ta-O-N compound film was formed mixed with non-stoichiometric TaON and Ta2O5, which further raised the oxygen atomic fraction to ~0.48. The increasing total working pressure results in an increasing band gap from 2.22 to 2.66 eV of Ta3-xN5-yOy films, and further increasing to around 2.96 eV of O-rich Ta-O-N compound films. The mechanism of increasing oxygen atomic fraction in the film is founded correlated with the forming oxide on the Ta target surface during the deposition process due to the strong reactivity of O to Ta by the characterization of optical emission spectroscopy (OES). Moreover, the sputter yield was reduced due to the target poisoning, and which is evidenced by both plasma analysis and depth profile from ERDA.A further studies with the deposition parameters for nearly pure Ta3N5 films (oxygen atomic fraction ~2%) was performed using c-axis oriented Al2O3 substrate. In this research, it is found that a Ta2O5 seed layer and a small amount of oxygen were necessary for the growth of Ta3N5. Without the help of seed layer and oxygen, only metallic TaN phases, either mixture of ε- and δ- TaN or δ-TaN were grown, evidenced by X-ray photoelectron spectroscopy (XPS). Furthermore, the structure and phase purity of Ta3N5-phase dominated films was found highly correlated with the thickness of the Ta2O5 seed layer. With the increasing thickness of the seed layer from 5, 9, to 17 nm, the composition of grown films was changed from 111-oriented δ-TaN mixed with c-axis oriented Ta3N5, c-axis oriented Ta3N5, to polycrystalline Ta3N5. In addition, the azimuthal φ-scans in grazing incident geometry demonstrates that the c-axis oriented Ta3N5 contained epitaxially three-variant-orientation domains, in which the a and b planes parallel to the m and a planes of c-axis oriented Al2O3. With the simulation of density functional theory (DFT), the growth of thin seed layers of orthorhombic Ta2O5 (β-Ta2O5) was found promoting by introducing a small amount of oxygen, after calculating the interplay between the topological and energy selection criteria. By the co-action of the mentioned criteria, this already grown Ta2O5 seed layer favored the growth of the orthorhombic Ta3N5 phase. Hence, the mechanism of the domain epitaxial growth of c-axis oriented Ta3N5 on c-axis oriented Al2O3 is attributed to the similar atomic arrangement Ta3N5(001) and β-Ta2O5(201) with a small lattice mismatch around of 2.6% and 4.5%, for the interface of film/seed layer and seed layer/substrate, respectively, and a favorable energetic interaction between involved materials.
  •  
5.
  • Chen, Leilei, et al. (författare)
  • High-temperature wear mechanisms of TiNbWN films : Role of nanocrystalline oxides formation
  • 2023
  • Ingår i: Friction. - : Springer. - 2223-7690 .- 2223-7704. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Refractory high/medium entropy nitrides (HENs/MENs) exhibit comprehensive application prospects as protective films on mechanical parts, particularly those subjected to sliding contacts at elevated temperatures. In this study, a new MEN system TiNbWN, forming a single fcc solution, is designed and its wear performance at temperatures ranging from 25 to 750 °C is explored. The wear mechanisms can be rationalized by examining the subsurface microstructural evolutions using the transmission electron microscopy as well as calculating the phase diagrams and interfacial adhesion behavior employing calculation of phase diagram (CALPHAD) and density functional theory (DFT). To be specific, increased wear losses occur in a temperature range of 25–600 °C, being predominantly caused by the thermally-induced hardness degradation; whereas at the ultimate temperature (750 °C), the wear loss is refrained due to the formation of nanocrystalline oxides (WnO3n−2, TiO2, and γTiOx), as synergistically revealed by microscopy and CALPHAD, which not only enhance the mechanical properties of the pristine nitride film, but also act as solid lubricants, reducing the interfacial adhesion. Thus, our work delineates the role of the in situ formed nanocrystalline oxides in the wear mechanism transition of TiNbWN thin films, which could shed light on the high-temperature wear behavior of refractory HEN/MEN films.
  •  
6.
  • Edström, Daniel, 1986- (författare)
  • Growth and Mechanical Properties of Transition Metal Nitrides and Carbides
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The atomic-scale dynamical processes at play during film growth cannot be resolved by even the most advanced experimental methods. As such, computational methods, and chiefly classical molecular dynamics, are the only available research tools to study these processes. The investigation of key dynamical processes during thin film growth yields a deeper understanding of the film growth evolution, ultimately allowing for the optimization of experimental parameters and tailoring of film properties. This thesis details the study of fundamental surface dynamics processes, and the role played by primary diffusing species, during TiN film growth, here employed as a model system for transition metal nitrides in general. It is found that Ti adatoms and TiN2 admolecules are the fastest diffusing species, and the species which most rapidly descend from islands onto the growing film. Thus, they are the main contributors and players in driving the layer-by-layer growth mode. TiN3 admolecules, in contrast, are essentially stationary and thereby promote multilayer growth. Large-scale growth simulations reveal that tailoring the incident N/Ti ratio and N kinetic energy significantly affects the growth mode and film microstructure.The mechanical properties of ternary transition metal nitride and carbide alloys, investigated using density functional theory, are also discussed herein, in comparison to recent experimental results. By optimizing the valence electron concentration in these compounds, the occupation of shear-compliant d‑t2g electronic states can be maximized. The investigation of M1M2N alloys, where M1 = Ti or V and M2 = W or Mo, with different structures demonstrates that this optimization leads to enhanced ductility, and thereby toughness, in transition metal nitride alloys regardless of the degree of ordering on the metal sublattice. Estimations based on the calculation of the mechanical properties of the corresponding M1M2C transition metal carbide alloys indicate that these materials remain brittle. However, charge density analysis and calculations of stress/strain curves reveal features commonly associated with ductile materials.
  •  
7.
  • Elalfy, Loay, et al. (författare)
  • Metavalent bonding induced abnormal phonon transport in diamondlike structures:Beyond conventional theory
  • 2021
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 103
  • Tidskriftsartikel (refereegranskat)abstract
    • A phenomenon appears in a few examples of the chalcopyrites (space group I-42 d) where heavier atoms do not necessarily lead to lower lattice thermal conductivity, in contradiction with Keyes expression that formulates an inverse relation of thermal conductivity with mean atomic mass. Herewith, the thermal conductivity of CuInSe2, CuInTe2, AgInSe2, and AgInTe2 was calculated and compared at room temperature from the linearized Boltzmann transport equation using ab initio density functional theory. CuInSe2 and AgInSe2 solids exhibit lower lattice thermal conductivity than that of CuInTe2 and AgInTe2, respectively, despite the fact that Te atoms are significantly heavier than Se. A comparison between dispersion relation, the Grüneisen parameter, and projected density of states leads to the conclusion that anharmonic transverse acoustic modes in the form of anomalous vibrations of Cu and Ag cause the lower values of the thermal conductivity. By analyzing the electronic structure, the compounds under study fit perfectly into a recently defined region of the metavalent bonding well known for its pronounced anharmonicity. The insight gained from the current results deepens our understanding of the unusual heat transfer phenomenon related to the metavalent bonding and sheds light on design and discovery of thermally functional materials that break the prediction by the conventional theory.
  •  
8.
  • Emmerlich, Jens, et al. (författare)
  • Thermal stability of Ti3SiC2 thin films
  • 2007
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454 .- 1873-2453. ; 55:4, s. 1479-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal stability of Ti3SiC2(0 0 0 1) thin films is studied by in situ X-ray diffraction analysis during vacuum furnace annealing in combination with X-ray photoelectron spectroscopy, transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray analysis. The films are found to be stable during annealing at temperatures up to 1000 °C for 25 h. Annealing at 1100–1200 °C results in the rapid decomposition of Ti3SiC2 by Si out-diffusion along the basal planes via domain boundaries to the free surface with subsequent evaporation. As a consequence, the material shrinks by the relaxation of the Ti3C2 slabs and, it is proposed, by an in-diffusion of O into the empty Si-mirror planes. The phase transformation process is followed by the detwinning of the as-relaxed Ti3C2 slabs into (1 1 1)-oriented TiC0.67 layers, which begin recrystallizing at 1300 °C. Ab initio calculations are provided supporting the presented decomposition mechanisms.
  •  
9.
  • Gangaprasad Rao, Smita, 1992- (författare)
  • Phase formation in multicomponent films based on 3d transition metals
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The need for materials that enhance life span, performance, and sustainability has propelled research in alloy design from binary alloys to more complex systems such as multicomponent alloys. The CoCrFeMnNi alloy, more commonly known as the Cantor alloy, is one of the most studied systems in bulk as well as thin film. The addition of light elements such as boron, carbon, nitrogen, and oxygen is a means to alter the properties of these materials. The challenge lies in understanding the process of phase formation and microstructure evolution on addition of these light elements. To address this challenge, I investigate multicomponent alloys based on a simplified version of the Cantor alloy.My thesis investigates the addition of nitrogen into a Cantor variant system as a step towards understanding the full Cantor alloy. Me1-yNy (Me = Cr + Fe + Co, 0.14 ≤ y ≤0.28 thin films were grown by reactive magnetron sputtering. The films showed a change in structure from fcc to mixed fcc+bcc and finally a bcc-dominant film with increasing nitrogen content. The change in phase and microstructure influenced the mechanical and electrical properties of the films. A maximum hardness of 11 ± 0.7 GPa and lowest electrical resistivity of 28 ± 5 μΩcm were recorded in the film with mixed phase (fcc+bcc) crystal structure.Copper was added as a fourth metallic alloying element into the film with the mixed fcc + bcc structure, resulting in stabilization of the bcc phase even though Cu has been reported to be a fcc stabilizer. The energy brought to the substrate increases on Cu addition which promotes surface diffusion of the ions and leads to small but randomly oriented grains. The maximum hardness recorded by nanoindentation was found to be 13.7 ± 0.2 GPa for the sample Cu0.05. While it is generally believed that large amounts of Cu can be detrimental to thin film properties due to segregation, this study shows that small amounts of Cu in the multicomponent matrix could be beneficial in stabilizing phases as well as for mechanical properties.This thesis thus provides insights into the phase formation of nitrogen-containing multicomponent alloys.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 64
Typ av publikation
tidskriftsartikel (53)
licentiatavhandling (7)
doktorsavhandling (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (53)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Music, Denis (57)
Schneider, Jochen M. (21)
Primetzhofer, Daniel (13)
Helmersson, Ulf (12)
Hans, Marcus (12)
Chang, Keke (6)
visa fler...
Mraz, Stanislav (5)
Holzapfel, Damian M. (5)
Kugler, Veronika Moz ... (4)
Bogdanovski, Dimitri (4)
Schneider, J. M. (4)
Hultman, Lars (3)
Olsson, Pär (3)
Chirita, Valeriu (3)
Eklund, Per (3)
Keuter, Philipp (3)
Jin, P. (3)
Kreissig, U. (3)
Evertz, Simon (3)
Music, Denis, Profes ... (3)
Ravensburg, Anna L. (3)
Sun, Zhimei (3)
Music, Denis, Dr. (3)
Olsson, Pär A T, 198 ... (3)
Eriksson, Anders O. (3)
Arndt, Mirjam (3)
Lindbäck, Ture (2)
Sarakinos, Kostas (2)
Abrikosov, Igor (2)
Karimi Aghda, Soheil (2)
Ahuja, Rajeev (2)
Unutulmazsoy, Yeliz (2)
Anders, Andre (2)
Patterer, Lena (2)
Le Febvrier, Arnaud (2)
Söderlind, Fredrik (2)
Vitos, Levente (2)
Alami, Jones (2)
Xu, Kai (2)
Chen, Xiang (2)
Hektor, Johan (2)
Hunold, Oliver (2)
Czigany, Zsolt (2)
Nakao, S (2)
Chen, Leilei (2)
Lou, Ming (2)
Liu, Sida (2)
Vitos, Levente, Prof ... (2)
Shu, Rui (2)
Ondracka, Pavel (2)
visa färre...
Lärosäte
Linköpings universitet (28)
Uppsala universitet (26)
Malmö universitet (20)
Lunds universitet (5)
Kungliga Tekniska Högskolan (4)
Luleå tekniska universitet (2)
Språk
Engelska (64)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (41)
Teknik (19)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy