SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mustaniemi H) "

Sökning: WFRF:(Mustaniemi H)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jönsson, Emma H., et al. (författare)
  • Affective and non-affective touch evoke differential brain responses in 2-month-old infants
  • 2018
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 169, s. 162-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Caressing touch is an effective way to communicate emotions and to create social bonds. It is also one of the key mediators of early parental bonding. The caresses are generally thought to represent a social form of touching and indeed, slow, gentle brushing is encoded in specialized peripheral nerve fibers, the C-tactile (CT) afferents. In adults, areas such as the posterior insula and superior temporal sulcus are activated by affective, slow stroking touch but not by fast stroking stimulation. However, whether these areas are activated in infants, after social tactile stimulation, is unknown. In this study, we compared the total hemoglobin responses measured with diffuse optical tomography (DOT) in the left hemisphere following slow and fast stroking touch stimulation in 16 2-month-old infants. We compared slow stroking (optimal CT afferent stimulation) to fast stroking (non-optimal CT stimulation). Activated regions were delineated using two methods: one based on contrast between the two conditions, and the other based on voxel-based statistical significance of the difference between the two conditions. The first method showed a single activation cluster in the temporal cortex with center of gravity in the middle temporal gyrus where the total hemoglobin increased after the slow stroking relative to the fast stroking (p = 0.04 uncorrected). The second method revealed a cluster in the insula with an increase in total hemoglobin in the insular cortex in response to slow stroking relative to fast stroking (p = 0.0005 uncorrected; p = 0.04 corrected for multiple comparisons). These activation clusters encompass areas that are involved in processing of affective, slow stroking touch in the adult brain. We conclude that the infant brain shows a pronounced and adult-like response to slow stroking touch compared to fast stroking touch in the insular cortex but the expected response in the primary somatosensory cortex was not found at this age. The results imply that emotionally valent touch is encoded in the brain in adult-like manner already soon after birth and this suggests a potential for involvement of touch in bonding with the caretaker.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Mustaniemi, S, et al. (författare)
  • Normal Gestational Weight Gain Protects From Large-for-Gestational-Age Birth Among Women With Obesity and Gestational Diabetes
  • 2021
  • Ingår i: Frontiers in public health. - : Frontiers Media SA. - 2296-2565. ; 9, s. 550860-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pre-pregnancy obesity, excess gestational weight gain (GWG), and gestational diabetes (GDM) increase fetal growth. Our aim was to assess whether normal GWG is associated with lower risk for a large-for-gestational-age (LGA; over the 90th percentile of birth weight for sex and gestational age) infant and lower birth weight standard deviation (SD) score in the presence of GDM and maternal obesity.Methods: This multicenter case-control study is part of the Finnish Gestational Diabetes (FinnGeDi) Study and includes singleton pregnancies of 1,055 women with GDM and 1,032 non-diabetic controls. Women were divided into 12 subgroups according to their GDM status, pre-pregnancy body mass index (BMI; kg/m2), and GWG. Non-diabetic women with normal BMI and normal GWG (according to Institute of Medicine recommendations) served as a reference group.Results: The prevalence of LGA birth was 12.2% among women with GDM and 6.2% among non-diabetic women (p < 0.001). Among all women, normal GWG was associated with lower odds of LGA [odds ratio (OR) 0.57, 95% CI: 0.41–0.78]. Among women with both obesity and GDM, the odds for giving birth to a LGA infant was 2.25-fold (95% CI: 1.04–4.85) among those with normal GWG and 7.63-fold (95% CI: 4.25–13.7) among those with excess GWG compared with the reference group. Compared with excess GWG, normal GWG was associated with 0.71 SD (95% CI: 0.47–0.97) lower birth weight SD score among women with GDM and obesity. Newborns of normal weight women with GDM and normal GWG had 0.28 SD (95% CI: 0.05–0.51) lower birth weight SD scores compared with their counterparts with excess GWG. In addition, in the group of normal weight non-diabetic women, normal GWG was associated with 0.46 SD (95% CI: 0.30–0.61) lower birth weight SD scores compared with excess GWG.Conclusion: GDM, obesity, and excess GWG are associated with higher risk for LGA infants. Interventions aiming at normal GWG have the potential to lower LGA rate and birth weight SD scores even when GDM and obesity are present.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Pervjakova, Natalia, et al. (författare)
  • Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 31:19, s. 3377-3391
  • Tidskriftsartikel (refereegranskat)abstract
    • Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy (GenDIP) Consortium assembled genome-wide association studies (GWAS) of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (p < 5x10-8) with GDM, mapping to/near MTNR1B (p = 4.3x10-54), TCF7L2 (p = 4.0x10-16), CDKAL1 (p = 1.6 × 10-14), CDKN2A-CDKN2B (p = 4.1x10-9) and HKDC1 (p = 2.9x10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D; and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomisation analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy