SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muto F.) "

Sökning: WFRF:(Muto F.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abe, K., et al. (författare)
  • Neutron tagging following atmospheric neutrino events in a water Cherenkov detector
  • 2022
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 mu s.
  •  
2.
  • Meani, F, et al. (författare)
  • Investigation of the Ovarian and Prostate Cancer Peptidome for Candidate Early Detection Markers Using a Novel Nanoparticle Biomarker Capture Technology
  • 2010
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 2:4, s. 504-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Current efforts to identify protein biomarkers of disease use mainly mass spectrometry (MS) to analyze tissue and blood specimens. The low-molecular-weight "peptidome" is an attractive information archive because of the facile nature by which the low-molecular-weight information freely crosses the endothelial cell barrier of the vasculature, which provides opportunity to measure disease microenvironment-associated protein analytes secreted or shed into the extracellular interstitium and from there into the circulation. However, identifying useful protein biomarkers (peptidomic or not) which could be useful to detect early detection/monitoring of disease, toxicity, doping, or drug abuse has been severely hampered because even the most sophisticated, high-resolution MS technologies have lower sensitivities than those of the immunoassays technologies now routinely used in clinical practice. Identification of novel low abundance biomarkers that are indicative of early-stage events that likely exist in the sub-nanogram per milliliter concentration range of known markers, such as prostate-specific antigen, cannot be readily detected by current MS technologies. We have developed a new nanoparticle technology that can, in one step, capture, concentrate, and separate the peptidome from high-abundance blood proteins. Herein, we describe an initial pilot study whereby the peptidome content of ovarian and prostate cancer patients is investigated with this method. Differentially abundant candidate peptidome biomarkers that appear to be specific for early-stage ovarian and prostate cancer have been identified and reveal the potential utility for this new methodology
  •  
3.
  • Gauckler, Philipp, et al. (författare)
  • Rituximab in Membranous Nephropathy
  • 2021
  • Ingår i: Kidney International Reports. - : Elsevier BV. - 2468-0249. ; 6:4, s. 881-893
  • Forskningsöversikt (refereegranskat)abstract
    • Membranous nephropathy (MN) is the most common cause of primary nephrotic syndrome among adults. The identification of phospholipase A2 receptor (PLA2R) as target antigen in most patients changed the management of MN dramatically, and provided a rationale for B-cell depleting agents such as rituximab. The efficacy of rituximab in inducing remission has been investigated in several studies, including 3 randomized controlled trials, in which complete and partial remission of proteinuria was achieved in approximately two-thirds of treated patients. Due to its favorable safety profile, rituximab is now considered a first-line treatment option for MN, especially in patients at moderate and high risk of deterioration in kidney function. However, questions remain about how to best use rituximab, including the optimal dosing regimen, a potential need for maintenance therapy, and assessment of long-term safety and efficacy outcomes. In this review, we provide an overview of the current literature and discuss both strengths and limitations of “the new standard.”
  •  
4.
  •  
5.
  •  
6.
  • Gauckler, Philipp, et al. (författare)
  • Rituximab in adult minimal change disease and focal segmental glomerulosclerosis - What is known and what is still unknown?
  • 2020
  • Ingår i: Autoimmunity Reviews. - : Elsevier BV. - 1568-9972 .- 1873-0183. ; 19:11
  • Forskningsöversikt (refereegranskat)abstract
    • Primary forms of minimal change disease and focal segmental glomerulosclerosis are rare podocytopathies and clinically characterized by nephrotic syndrome. Glucocorticoids are the cornerstone of the initial immunosuppressive treatment in these two entities. Especially among adults with minimal change disease or focal segmental glomerulosclerosis, relapses, steroid dependence or resistance are common and necessitate re-initiation of steroids and other immunosuppressants. Effective steroid-sparing therapies and introduction of less toxic immunosuppressive agents are urgently needed to reduce undesirable side effects, in particular for patients whose disease course is complex. Rituximab, a B cell depleting monoclonal antibody, is increasingly used off-label in these circumstances, despite a low level of evidence for adult patients. Hence, critical questions concerning drug-safety, long-term efficacy and the optimal regimen for rituximab-treatment remain unanswered. Evidence in the form of large, multicenter studies and randomized controlled trials are urgently needed to overcome these limitations.
  •  
7.
  •  
8.
  •  
9.
  • Tamburro, Davide, et al. (författare)
  • Multifunctional Core-Shell Nanoparticles : Discovery of Previously Invisible Biomarkers
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:47, s. 19178-19188
  • Tidskriftsartikel (refereegranskat)abstract
    • Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy