SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Myhre R.H.) "

Sökning: WFRF:(Myhre R.H.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wolf, T. J. A., et al. (författare)
  • Probing molecular photoinduced dynamics by ultrafast soft x-rays
  • 2017
  • Ingår i: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). 25-29 June 2017, Munich, Germany. - : IEEE. - 9781509067367 - 9781509067374
  • Konferensbidrag (refereegranskat)abstract
    • Summary form only given. Molecules selectively transform light energy from the sun into other forms of energy like heat, electricity, or chemical energy with high quantum efficiency. The energy conversion process is the result of a correlated motion of electrons and nuclei after photoexcitation, often under breakdown of the Born-Oppenheimer approximation. The element and site selectivity of x-rays allows observing molecular processes from a different point of view compared to ultrafast optical probes [1,2]. I will concentrate on time resolved x-ray absorption spectroscopy. The method provides high selectivity on the transient electronic structure of a molecule. Recently, we establishes this method in the soft x-ray domain for probing ππ* to nπ* transitions, a general and important process for molecular energy conversion. Fig. 1 shows a sketch of thymine, used in the experiment, with one of the oxygen 1s core orbitals and the π,n and π* valence orbitals. While valence orbitals are generally delocalized over the whole molecular body, the lone pair n orbital is essentially an oxygen 2p orbital. An x-ray induced transition from the oxygen 1s to the n orbital will result in a strong absorption maximum in the pre-edge region. We use this feature to probe the molecular dynamics after photoexcitation.
  •  
2.
  • Wolf, T.J.A., et al. (författare)
  • Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.
  •  
3.
  • Wolf, T.J.A., et al. (författare)
  • Transient Resonant Auger-Meitner Spectra of Photoexcited Thymine
  • 2021
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1364-5498 .- 1359-6640. ; 228, s. 555-70
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first investigation of excited state dynamics by resonant Auger-Meitner spectroscopy (also known as resonant Auger spectroscopy) using the nucleobase thymine as an example. Thymine is photoexcited in the UV and probed with X-ray photon energies at and below the oxygen K-edge. After initial photoexcitation to a ππ* excited state, thymine is known to undergo internal conversion to an nπ* excited state with a strong resonance at the oxygen K-edge, red-shifted from the groundstate π* resonances of thymine (see our previous study Wolf et al.,Nat. Commun., 2017,8, 29). We resolve and compare the Auger-Meitner electron spectra associated both with the excited state and ground state resonances, and distinguish participato rand spectator decay contributions. Furthermore, we observe simultaneously with the decay of the nπ* state signatures the appearance of additional resonant Auger-Meitner contributions at photon energies between the nπ* state and the ground state resonances. We assign these contributions to population transfer from the nπ* state to a ππ* triplet state via intersystem crossing on the picosecond timescale based on simulations of the X-ray absorption spectra in the vibrationally hot triplet state. Moreover, we identify signatures from the initially excited ππ* singlet state which we have not observed in our previous study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy