SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Myneni S.) "

Sökning: WFRF:(Myneni S.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Sitch, S., et al. (författare)
  • Recent trends and drivers of regional sources and sinks of carbon dioxide
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 12:3, s. 653-679
  • Tidskriftsartikel (refereegranskat)abstract
    • The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 +/- 0.7 PgC yr(-1) with a small significant trend of -0.06 +/- 0.03 PgC yr(-2) (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 +/- 0.2 PgC yr(-1) with a trend in the net C uptake that is indistinguishable from zero (-0.01 +/- 0.02 PgC yr(-2)). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of 0.02 +/- 0.01 PgC yr(-2). Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 +/- 0.08 PgC yr(-2) exceeds a significant trend in heterotrophic respiration of 0.16 +/- 0.05 PgC yr(-2) - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (0.04 +/- 0.01 PgC yr(-2)), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
  •  
4.
  • Sitch, S., et al. (författare)
  • Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  • 2013
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 10, s. 20113-20177
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract. The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of –2.2 ± 0.2 Pg C yr–1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends.
  •  
5.
  •  
6.
  • Iram, T., et al. (författare)
  • Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 605, s. 509-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing(1-3). Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds(4,5). We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.
  •  
7.
  • Shen, M., et al. (författare)
  • Evaporative cooling over the Tibetan plateau induced by vegetation growth
  • 2015
  • Ingår i: Proceedings of the National Academy of Science of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:30, s. 9299-9304
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.
  •  
8.
  • Amizhtan, S. K., et al. (författare)
  • Experimental Study and ANN Analysis of Rheological Behavior of Mineral Oil-Based SiO2 Nanofluids
  • 2022
  • Ingår i: IEEE transactions on dielectrics and electrical insulation. - : Institute of Electrical and Electronics Engineers (IEEE). - 1070-9878 .- 1558-4135. ; 29:3, s. 956-964
  • Tidskriftsartikel (refereegranskat)abstract
    • This work reports an experimental and theoretical analysis of the rheological properties of mineral oil-based SiO2 nanofluid for their potential applications in transformer insulation. The flow electrification mechanism on the nanofluids with different surfactants such as cetyl trimethyl ammonium bromide (CTAB), oleic acid, and Span 80 is studied using a spinning disk technique. The results show a higher streaming current for the nanofluids with CTAB as a surfactant compared to oleic acid and Span 80. The rheological behavior of nanofluids is explored with the double gap concentric cylinder geometry. The variation of shear stress with shear rate follows a power law relationship along with a yield stress observed for all the nanofluids. A transition is seen from storage modulus to dominant loss modulus for the nanofluids during the frequency sweep analysis, whereas no transition is observed in the case of mineral oil. In addition, regression analysis using artificial neural network (ANN) algorithms are performed on the experimentally measured viscosity of the nanofluids in order to estimate theoretical parameters and provide insights into the streaming current formation. The desirable rheological characteristics of nanofluids are identified for achieving enhanced insulation performance in transformers.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (17)
annan publikation (3)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Nilsson, A (8)
Ciais, P. (4)
Rozanov, A. (2)
Scanlon, T. (2)
Chevallier, F. (2)
Sharma, S. (2)
visa fler...
Allan, Rob (2)
Becker, Andreas (2)
Benedetti, Angela (2)
Berry, David I. (2)
Bosilovich, Michael ... (2)
Boucher, Olivier (2)
Christiansen, Hanne ... (2)
Christy, John R. (2)
Chung, E. S. (2)
Coldewey-Egbers, Mel ... (2)
Cooper, Owen R. (2)
Davis, Sean M. (2)
De Eyto, Elvira (2)
De Jeu, Richard A.M. (2)
Degasperi, Curtis L. (2)
Degenstein, Doug (2)
Di Girolamo, Larry (2)
Dokulil, Martin T. (2)
Donat, Markus G. (2)
Dorigo, Wouter A. (2)
Zetterberg, Henrik, ... (2)
Phillips, C. (2)
Long, Craig S. (2)
Anderson, J (2)
Zhu, Z (2)
Gobron, N. (2)
Kaiser, J. W. (2)
Kratz, D. P. (2)
Sawaengphokhai, P. (2)
Willett, K. M. (2)
Arneth, A. (2)
Kelly, S. (2)
Ades, M. (2)
Adler, R. (2)
Allan, R. P. (2)
Arguez, Anthony (2)
Arosio, C. (2)
Augustine, J. A. (2)
Barichivich, J. (2)
Barnes, J. (2)
Beck, H. E. (2)
Bellouin, Nicolas (2)
Blenkinsop, Stephen (2)
Bock, Olivier (2)
visa färre...
Lärosäte
Stockholms universitet (7)
Göteborgs universitet (4)
Lunds universitet (4)
Kungliga Tekniska Högskolan (3)
Linköpings universitet (3)
Uppsala universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (15)
Odefinierat språk (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy