SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Myronenko Andriy) "

Sökning: WFRF:(Myronenko Andriy)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gupta, Vikas, et al. (författare)
  • Fast and robust adaptation of organs-at-risk delineations from planning scans to match daily anatomy in pre-treatment scans for online-adaptive radiotherapy of abdominal tumors
  • 2018
  • Ingår i: Radiotherapy and Oncology. - : ELSEVIER IRELAND LTD. - 0167-8140 .- 1879-0887. ; 127:2, s. 332-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To validate a novel deformable image registration (DIR) method for online adaptation of planning organ-at-risk (OAR) delineations to match daily anatomy during hypo-fractionated RT of abdominal tumors. Materials and methods: For 20 liver cancer patients, planning OAR delineations were adapted to daily anatomy using the DIR on corresponding repeat CTs. The DIRs accuracy was evaluated for the entire cohort by comparing adapted and expert-drawn OAR delineations using geometric (Dice Similarity Coefficient (DSC), Modified Hausdorff Distance (MHD) and Mean Surface Error (MSE)) and dosimetric (D-max and D-mean) measures. Results: For all OARs, DIR achieved average DSC, MHD and MSE of 86%, 2.1 mm, and 1.7 mm, respectively, within 20 s for each repeat CT. Compared to the baseline (translations), the average improvements ranged from 2% (in heart) to 24% (in spinal cord) in DSC, and 25% (in heart) to 44% (in right kidney) in MHD and MSE. Furthermore, differences in dose statistics (D-max, D-mean and D-2%) using delineations from an expert and the proposed DIR were found to be statistically insignificant (p amp;gt; 0.01). Conclusion: The validated DIR showed potential for online-adaptive radiotherapy of abdominal tumors as it achieved considerably high geometric and dosimetric correspondences with the expert-drawn OAR delineations, albeit in a fraction of time required by experts. (C) 2018 The Authors. Published by Elsevier B.V.
  •  
2.
  • Mehta, Raghav, et al. (författare)
  • QU-BraTS : MICCAI BraTS 2020 Challenge on QuantifyingUncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
  • 2022
  • Ingår i: Journal of Machine Learning for Biomedical Imaging. - 2766-905X. ; , s. 1-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019-2020 task on uncertainty quantification (QU-BraTS), and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions, and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentages of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, and hence highlight the need for uncertainty quantification in medical image analyses. Our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy