SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(N. Zurlo) "

Sökning: WFRF:(N. Zurlo)

  • Resultat 1-10 av 233
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
2.
  • Grandjean, A., et al. (författare)
  • Constraining the properties of HD 206893 B A combination of radial velocity, direct imaging, and astrometry data
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spectra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument at the Very Large Telescope (VLT) in 2017, which orbits at similar to 11 au around HD 206893. Its mass was estimated between 12 and 50 M-J from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained. Aims. We aim at constraining the orbit and dynamical mass of HD 206893 B. Methods. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by HIPPARCOS and Gaia with a time baseline of 24 yr. We used a Markov chain Monte Carlo approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data. Results. We infer a period between 21 and 33 yr and an inclination in the range 20-41 degrees from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yr. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with HIPPARCOS and Gaia data. An additional inner (semimajor axis in the range 1.4-2.6 au) and massive (similar to 15 M-J) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.
  •  
3.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
4.
  • Langlois, M., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : II. Observations, data reduction and analysis, detection performances, and initial results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) around their host stars. In striving to understand their formation and evolution mechanisms, in 2015 we initiated the SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars that is targeted at exploring their demographics.Aims. We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets.Methods. In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars that are representative of the full SHINE sample. Observations were conducted in a homogeneous way between February 2015 and February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager, covering a spectral range between 0.9 and 2.3 μm. We used coronographic, angular, and spectral differential imaging techniques to achieve the best detection performances for this study, down to the planetary mass regime.Results. We processed, in a uniform manner, more than 300 SHINE observations and datasets to assess the survey typical sensitivity as a function of the host star and of the observing conditions. The median detection performance reached 5σ-contrasts of 13 mag at 200 mas and 14.2 mag at 800 mas with the IFS (YJ and YJH bands), and of 11.8 mag at 200 mas, 13.1 mag at 800 mas, and 15.8 mag at 3 as with IRDIS in H band, delivering one of the deepest sensitivity surveys thus far for young, nearby stars. A total of sixteen substellar companions were imaged in this first part of SHINE: seven brown dwarf companions and ten planetary-mass companions.These include two new discoveries, HIP 65426 b and HIP 64892 B, but not the planets around PDS70 that had not been originally selected for the SHINE core sample. A total of 1483 candidates were detected, mainly in the large field of view that characterizes IRDIS. The color-magnitude diagrams, low-resolution spectrum (when available with IFS), and follow-up observations enabled us to identify the nature (background contaminant or comoving companion) of about 86% of our subsample. The remaining cases are often connected to crowded-field follow-up observations that were missing. Finally, even though SHINE was not initially designed for disk searches, we imaged twelve circumstellar disks, including three new detections around the HIP 73145, HIP 86598, and HD 106906 systems.Conclusions. Nowadays, direct imaging provides a unique opportunity to probe the outer part of exoplanetary systems beyond 10 au to explore planetary architectures, as highlighted by the discoveries of: one new exoplanet, one new brown dwarf companion, and three new debris disks during this early phase of SHINE. It also offers the opportunity to explore and revisit the physical and orbital properties of these young, giant planets and brown dwarf companions (relative position, photometry, and low-resolution spectrum in near-infrared, predicted masses, and contrast in order to search for additional companions). Finally, these results highlight the importance of finalizing the SHINE systematic observation of about 500 young, nearby stars for a full exploration of their outer part to explore the demographics of young giant planets beyond 10 au and to identify the most interesting systems for the next generation of high-contrast imagers on very large and extremely large telescopes.
  •  
5.
  • Mesa, D., et al. (författare)
  • Limits on the presence of planets in systems with debris discs : HD92945 and HD107146
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:1, s. 1276-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations of resolved cold debris discs at tens of au have revealed that gaps could be a common feature in these Kuiper-belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer in near the edges of the disc. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1–2 MJup for planets located inside the gap and to less than 5 MJup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the discs around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct-imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial-velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper-motion anomaly of HD 107146 to values of 2–7 au and 2–5 MJup, respectively.
  •  
6.
  • Vigan, A., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
7.
  • Acharya, S., et al. (författare)
  • Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC
  • 2023
  • Ingår i: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 845
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=−2 sector of the meson–baryon interaction at low energies. In particular, the ΛK‾ might help in understanding the origin of states such as the Ξ(1620), whose nature and properties are still under debate. Experimental data on Λ–K and Λ–K‾ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ–K⊕+Λ‾–K− and Λ–K⊕−Λ‾–K+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at s=13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednický–Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ–K⊕−Λ‾–K+ correlations show the presence of several structures at relative momenta k⁎ above 200 MeV/c, compatible with the Ω baryon, the Ξ(1690), and Ξ(1820) resonances decaying into Λ–K− pairs. The low k⁎ region in the Λ–K⊕−Λ‾–K+ also exhibits the presence of the Ξ(1620) state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the Ξ(1620) decaying into ΛK−. © 2023 The Author(s)
  •  
8.
  • Acharya, S., et al. (författare)
  • ALICE luminosity determination for Pb-Pb collisions at √ s NN= 5.02 TeV
  • 2024
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Luminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb-Pb collisions at a centre-of-mass energy per nucleon pair of √s NN= 5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan. This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb-Pb collisions at √s NN= 5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using the Glauber model. © 2024 Institute of Physics. All rights reserved.
  •  
9.
  • Acharya, S., et al. (författare)
  • Anisotropic flow and flow fluctuations of identified hadrons in Pb–Pb collisions at √sNN = 5.02 TeV
  • 2023
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; 2023:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The first measurements of elliptic flow of π ±, K ±, p + p ¯ , KS0 , Λ + Λ ¯ , ϕ, Ξ −+ Ξ ¯ + , and Ω −+ Ω ¯ + using multiparticle cumulants in Pb–Pb collisions at sNN = 5.02 TeV are resented. Results obtained with two- (v 2{2}) and four-particle cumulants (v 2{4}) are shown as a function of transverse momentum, p T, for various collision centrality intervals. Combining the data for both v 2{2} and v 2{4} also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark–gluon plasma. The characteristic features observed in previous p T-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low p T and the approximate scaling with the number of constituent quarks at intermediate p T, are similarly present in the four-particle correlations and the combinations of v 2{2} and v 2{4}. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide p T range. [Figure not available: see fulltext.]. © 2023, The Author(s).
  •  
10.
  • Acharya, S, et al. (författare)
  • Anisotropic flow of identified hadrons in Xe-Xe collisions at √sNN = 5.44 TeV
  • 2021
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; 2021:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of elliptic (v2) and triangular (v3) flow coefficients of π±, K±, p+p ¯ , KS0, and Λ+Λ ¯ obtained with the scalar product method in Xe-Xe collisions at sNN = 5.44 TeV are presented. The results are obtained in the rapidity range |y| < 0.5 and reported as a function of transverse momentum, pT, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for pT< 3 GeV/c, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3 < pT< 8 GeV/c). The magnitude of the baryon v2 is larger than that of mesons up to pT = 6 GeV/c. The centrality dependence of the shape evolution of the pT-differential v2 is studied for the various hadron species. The v2 coefficients of π±, K±, and p+p ¯ are reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD) for pT< 1 GeV/c. A comparison with vn measurements in the corresponding centrality intervals in Pb-Pb collisions at sNN = 5.02 TeV yields an enhanced v2 in central collisions and diminished value in semicentral collisions. [Figure not available: see fulltext.] © 2021, The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 233

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy