SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naderi Manesh Hossein) "

Sökning: WFRF:(Naderi Manesh Hossein)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghavami, Saeid, et al. (författare)
  • Brevinin-2R semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway
  • 2008
  • Ingår i: Journal of Cellular and Molecular Medicine (Print). - : Wiley-Blackwell. - 1582-1838 .- 1582-4934. ; 12:3, s. 1005-1022
  • Tidskriftsartikel (refereegranskat)abstract
    • Brevinin-2R is a novel non-hemolytic defensin that was isolated from the skin of the frog Rana ridibunda. It exhibits preferential cytotoxicity towards malignant cells, including Jurkat (T-cell leukemia), BJAB (B-cell lymphoma), HT29/219, SW742 (colon carcinomas), L929 (fibrosarcoma), MCF-7 (breast adenocarcinoma), A549 (lung carcinoma), as compared to primary cells including peripheral blood mononuclear cells (PBMC), T cells and human lung fibroblasts. Jurkat and MCF-7 cells overexpressing Bcl2, and L929 and MCF-7 over-expressing a dominant-negative mutant of a pro-apoptotic BNIP3 (ΔTM-BNIP3) were largely resistant towards Brevinin-2R treatment. The decrease in mitochondrial membrane potential (ΔΨm), or total cellular ATP levels, and increased reactive oxygen species (ROS) production, but not caspase activation or the release of apoptosis-inducing factor (AIF) or endonuclease G (Endo G), were early indicators of Brevinin-2R-triggered death. Brevinin-2R interacts with both early and late endosomes. Lysosomal membrane permeabilization inhibitors and inhibitors of cathepsin-B and cathepsin-L prevented Brevinin-2R-induced cell death. Autophagosomes have been detected upon Brevinin-2R treatment. Our results show that Brevinin-2R activates the lysosomalmitochondrial death pathway, and involves autophagy-like cell death.
  •  
2.
  • Mortezazadeh, Saeed, et al. (författare)
  • Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids : From the inverted hexagonal to the bilayer structure
  • 2019
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Lamellar and hexagonal lipid structures are of particular importance in the biological processes such as membrane fusion and budding. Atomistic simulations of formation of these phases and transitions between them are computationally prohibitive, hence development of coarse-grained models is an important part of the methodological development in this area. Here we apply systematic bottom-up coarse-graining to model different phase structures formed by 1,2-dioleoylphosphatidylethanolamine (DOPE) lipid molecules. We started from atomistic simulations of DOPE lipids in water carried out at two different water/lipid molar ratio corresponding to the lamellar L-alpha and inverted hexagonal H-II structures at low and high lipid concentrations respectively. The atomistic trajectories were mapped to coarse-grained trajectories, in which each lipid was represented by 14 coarse-grained sites. Then the inverse Monte Carlo method was used to compute the effective coarse-grained potentials which for the coarse-grain model reproduce the same structural properties as the atomistic simulations. The potentials derived from the low concentration atomistic simulation were only able to form a bilayer structure, while both L-alpha and H-II lipid phases were formed in simulations with potentials obtained at high concentration. The typical atomistic configurations of lipids at high concentration combine fragments of both lamellar and non-lamellar structures, that is reflected in the extracted coarse-grained potentials which become transferable and can form a wide range of structures including the inverted hexagonal, bilayer, tubule, vesicle and micellar structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy