SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nankali H) "

Sökning: WFRF:(Nankali H)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khorrami, F., et al. (författare)
  • An up-to-date block model and strain rate map of Iran using integrated campaign-mode and permanent GPS velocities
  • 2019
  • Ingår i: 27th IUGG General Assembly.
  • Konferensbidrag (refereegranskat)abstract
    • Iran accommodates a large part of the ongoing Arabia-Eurasia collision deformation. Because of such active tectonics, the country suffers from intensive seismicity and frequent destructive earthquakes in different locations.To study further the crustal deformation in Iran, we processed the data collected during 10 years (2006-2015) from the Iranian Permanent GNSS Network and combined them with previously published velocity solutions from GPS survey measurements during 1997–2013. We analysed this velocity field using a continuum approach to compute a new strain rate map for this region and we designed a block model based on the main geological, morphological, and seismic structures. Comparison between both approaches suggests similar results and allow us to present the first comprehensive first order fault slip rate estimates for the whole of Iran. Our results confirm most of the results from previous geodetic studies. Moreover, we also show a trade-off between the coupling ratio of the Iranian Makran subduction interface and the kinematic of the faults north of the Makran in the Jazmurian depression. Although too scarce to accurately estimate a coupling ratio, we show that coupling higher than 0.4 on the plate interface down to a depth of 25 km will induce extension on the E-W faults in the Jazmurian region. However, the sites close to the shoreline suggest a low coupling ratio, hence the coupling on this plate interface is probably more complicated than previously described and the Iranian Makran subduction interface mechanical behaviour might be similar to that on the Hellenic subduction zone.
  •  
2.
  • Mousavi, Z., et al. (författare)
  • Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region
  • 2013
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier. - 0012-821X .- 1385-013X. ; 377-378, s. 287-298
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a velocity field compiled from a network of 27 permanent and 20 campaign GPS stations  across NE Iran. This new GPS velocity field helps to investigate how Arabia-Eurasia collision deformation is accommodated at the northern boundary of the deforming zone. The present-day northward motion decreases eastward from 11 mm/yr at Tehran (~52°E) to 1.5 mm/yr at Mashhad  (~60°E). N-S shortening across the Kopeh Dagh, Binalud and Kuh-e-Surkh ranges sums to 4.5±0.5 mm/yr at longitude 59°E. The available GPS velocities allow us to describe the rigid-body rotation of the South Caspian about an Euler pole that is located further away than previously thought. We suggest that two new stations (MAVT and MAR2), which are sited far from the block boundaries, are most  likely to indicate the full motion of the South Caspian basin. These stations suggest that NW motion is accommodated by right-lateral slip on the Ashkabad fault (at a rate of up to 7 mm/yr) and by up to 4-6 mm/yr of summed left-lateral slip across the Shahroud left-lateral strike-slip system. Our new GPS results are important for assessing seismic hazard in NE Iran, which contains numerous large population centers and possesses an abundant historical earthquake record. Our results suggest that the fault zones along the eastern Alborz and western Kopeh Dagh may accommodate slip at much faster rates than previously thought. Fully assessing the role of these faults, and the hazard that they represent, requires independent verification of their slip-rates through additional GPS measurements and geological fieldwork.
  •  
3.
  • Nilforoushan, Faramarz, et al. (författare)
  • GPS network monitors the Arabia-Eurasia collision deformation in Iran
  • 2003
  • Ingår i: Journal of Geodesy. - : Springer Science and Business Media LLC. - 0949-7714 .- 1432-1394. ; 77, s. 411-422
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of crustal deformation in Iran due to the Arabia–Eurasia collision is estimated. The results are based on new global positioning system (GPS) data. In order to address the problem of the distribution of the deformation in Iran, Iranian and French research organizations have carried out the first large-scale GPS survey of Iran. A GPS network of 28 sites (25 in Iran, two in Oman and one in Uzbekistan) has been installed and surveyed twice, in September 1999 and October 2001. Each site has been surveyed for a minimum observation of 4 days. GPS data processing has been done using the GAMIT-GLOBK software package. The solution displays horizontal repeatabilities of about 1.2 mm in 1999 and 2001. The resulting velocities allow us to constrain the kinematics of the Iranian tectonic blocks. These velocities are given in ITRF2000 and also relative to Eurasia. This last kinematic model demonstrates that (1) the north–south shortening from Arabia to Eurasia is 2–2.5 cm/year, less than previously estimated, and (2) the transition from subduction (Makran) to collision (Zagros) is very sharp and governs the different styles of deformation observed in Iran. In the eastern part of Iran, most of the shortening is accommodated in the Gulf of Oman, while in the western part the shortening is more distributed from south to north. The large faults surrounding the Lut block accommodate most of the subduction–collision transition.
  •  
4.
  • Tavakoli, F., et al. (författare)
  • Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities
  • 2008
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 275, s. 342-375
  • Tidskriftsartikel (refereegranskat)abstract
    • GPS measurements across the Kazerun Fault System in the Zagros mountain belt provide first instantaneous velocities on the different segments. These results are closely consistent with the geological fault slip rates (over 150 ka), implying stable velocities over a longer period. The present-day strike–slip motion is distributed from the Main Recent Fault to the N-trending Kazerun Fault System along a preferential en-echelon fault zone included in a more distributed fan-shape fault pattern. The Hormuz salt decoupling layer cannot be the only cause of a sedimentary spreading because seismicity attests these faults are rooted in the basement. The Dena fault (3.7 mm/yr) transfers the MRF fault slip mainly to the Kazerun (3.6 mm/yr) and slightly to the High Zagros and Sabz Pushan faults (1.5 mm/yr), and the Kazerun fault further to the Kareh Bas fault (3.4 mm/yr). Total geological horizontal offsets associated with GPS slip rates help inferring precise fault slip onset ages. The successive onsets deduced by this approach imply that the right-lateral strike-slip activity of the MRF has propagated in time southeastward to the Dena segment, and then to the Kazerun segment and to the Kareh Bas fault.
  •  
5.
  • Vernant, P, et al. (författare)
  • Deciphering oblique shortening of central Alborz in Iran using geodetic data
  • 2004
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier. - 0012-821X. ; 223:1-2, s. 177-185
  • Tidskriftsartikel (refereegranskat)abstract
    • The Alborz is a narrow (100 km) and elevated (3000 m) mountain belt which accommodates the differential motion between the Sanandaj–Sirjan zone in central Iran and the South Caspian basin. GPS measurements of 12 geodetic sites in Central Alborz between 2000 and 2002 allow to constrain the motion of the belt with respect to western Eurasia. One site velocity on the Caspian shoreline suggests that the South Caspian basin moves northwest at a rate of 6±2 mm/year with respect to western Eurasia. North–South shortening across the Alborz occurs at 5±2 mm/year. To the South, deformation seems to extend beyond the piedmont area, probably due to active thrusting on the Pishva fault. We also observe a left-lateral shear of the overall belt at a rate of 4±2 mm/year, consistent with the geological motion observed along E–W active strike-slip faults inside the belt (e.g., the Mosha fault).
  •  
6.
  • Vernant, P, et al. (författare)
  • Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman
  • 2004
  • Ingår i: Geophysical Journal International. - 0956-540X .- 1365-246X. ; 157:1, s. 381-398
  • Tidskriftsartikel (refereegranskat)abstract
    • A network of 27 GPS sites was implemented in Iran and northern Oman to measure displacements in this part of the Alpine–Himalayan mountain belt. We present and interpret the results of two surveys performed in 1999 September and 2001 October. GPS sites in Oman show northward motion of the Arabian Plate relative to Eurasia slower than the NUVEL-1A estimates (e.g. 22 ± 2 mm yr−1 at N8°± 5°E instead of 30.5 mm yr−1 at N6°E at Bahrain longitude). We define a GPS Arabia–Eurasia Euler vector of 27.9°± 0.5°N, 19.5°± 1.4°E, 0.41°± 0.1° Myr−1. The Arabia–Eurasia convergence is accommodated differently in eastern and western Iran. East of 58°E, most of the shortening is accommodated by the Makran subduction zone (19.5 ± 2 mm yr−1) and less by the Kopet-Dag (6.5 ± 2 mm yr−1). West of 58°E, the deformation is distributed in separate fold and thrust belts. At the longitude of Tehran, the Zagros and the Alborz mountain ranges accommodate 6.5 ± 2 mm yr−1 and 8 ± 2 mm yr−1 respectively. The right-lateral displacement along the Main Recent Fault in the northern Zagros is about 3 ± 2 mm yr−1, smaller than what was generally expected. By contrast, large right-lateral displacement takes place in northwestern Iran (up to 8 ± mm yr−1). The Central Iranian Block is characterized by coherent plate motion (internal deformation <2 mm yr−1). Sites east of 61°E show very low displacements relative to Eurasia. The kinematic contrast between eastern and western Iran is accommodated by strike-slip motions along the Lut Block. To the south, the transition zone between Zagros and Makran is under transpression with right-lateral displacements of 11 ± 2 mm yr−1.
  •  
7.
  • Walpersdorf, A, et al. (författare)
  • Difference in the GPS deformation pattern of North and Central Zagros (Iran)
  • 2006
  • Ingår i: Geophysical Journal International. - 0956-540X .- 1365-246X. ; 167:3, s. 1077-1088
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements on either side of the Kazerun fault system in the Zagros Mountain Belt, Iran, show that the accommodation of the convergence of the Arabian and Eurasian Plates differs across the region. In northwest Zagros, the deformation is partitioned as 3–6 mm yr−1 of shortening perpendicular to the axis of the mountain belt, and 4–6 mm yr−1 of dextral strike-slip motion on northwest–southeast trending faults. No individual strike-slip fault seems to slip at a rate higher than ∼2 mm yr−1. In southeast Zagros, the deformation is pure shortening of 8 ± 2 mm yr−1 occurring perpendicular to the simple folded belt and restricted to the Persian Gulf shore. The fact that most of the deformation is located in front of the simple folded belt, close to the Persian Gulf, while seismicity is more widely spread across the mountain belt, confirms the decoupling of the surface sedimentary layers from the seismogenic basement. A comparison with the folding and topography corroborates a southwestward propagation of the surface deformation. The difference in deformation between the two regions suggests that right-lateral shear cumulates on the north–south trending Kazerun strike-slip fault system to 6 ± 2 mm yr−1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy