SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naqvi Muhammad Raza) "

Sökning: WFRF:(Naqvi Muhammad Raza)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Usman, Muhammad, et al. (författare)
  • Use of Gasoline, LPG and LPG-HHO Blend in SI Engine : A Comparative Performance for Emission Control and Sustainable Environment
  • 2020
  • Ingår i: Processes. - : MDPI. - 2227-9717. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The rising global warming concerns and explosive degradation of the environment requires the mainstream utilization of alternative fuels, such as hydroxy gas (HHO) which presents itself as a viable substitute for extracting the benefits of hydrogen. Therefore, an experimental study of the performance and emission characteristics of alternative fuels in contrast to conventional gasoline was undertaken. For experimentation, a spark ignition engine was run on a multitude of fuels comprising of gasoline, Liquefied petroleum gas (LPG) and hybrid blend of HHO with LPG. The engine was operated at 60% open throttle with engine speed ranging from 1600 rpm to 3400 rpm. Simultaneously, the corresponding performance parameters including brake specific fuel consumption, brake power and brake thermal efficiency were investigated. Emission levels of CO, CO2, HC and NOx were quantified in the specified speed range. To check the suitability of the acquired experimental data, it was subjected to a Weibull distribution fit. Enhanced performance efficiency and reduced emissions were observed with the combustion of the hybrid mixture of LPG with HHO in comparison to LPG: on average, brake power increased by 7% while the brake specific fuel consumption reduced by 15%. On the other hand, emissions relative to LPG decreased by 21%, 9% and 21.8% in cases of CO, CO2, and unburned hydrocarbons respectively. Incorporating alternative fuels would not only imply reduced dependency on conventional fuels but would also contribute to their sustainability for future generations. Simultaneously, the decrease in harmful environmental pollutants would help to mitigate and combat the threats of climate change.
  •  
2.
  • Farooq, Muhammad, et al. (författare)
  • Thermodynamic Performance Analysis of Hydrofluoroolefins (HFO) Refrigerants in Commercial Air-Conditioning Systems for Sustainable Environment
  • 2020
  • Ingår i: Processes. - : MDPI. - 2227-9717. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming is one of most severe environmental concerns that our planet is facing today. One of its causes is the previous generation of refrigerants that, upon release, remain in the atmosphere for longer periods and contribute towards global warming. This issue could potentially be solved by replacing the previous generation's high global warming potential (GWP) refrigerants with environmentally friendly refrigerants. This scenario requires an analysis of new refrigerants for a comparison of the thermodynamic properties of the previously used refrigerants. In the present research, a numerical study was conducted to analyze the thermodynamic performance of specifically low GWP hydrofluoroolefens (HFO) refrigerants for an actual vapor compression refrigeration cycle (VCRC) with a constant degree of 3 K superheat. The output parameters included the refrigeration effect, compressor work input, the coefficient of performance (COP), and the volumetric refrigeration capacity (VRC), all of which were calculated by varying the condenser pressure from 6 to 12 bars and vapor pressure from 0.7 to 1.9 bars. Results showed that R1234ze(Z) clearly possessed the desired thermodynamic performance. The drop in refrigeration effect for R1234ze(Z) was merely 14.6% less than that of R134a at a 12 bar condenser pressure; this was minimum drop among candidate refrigerants. The drop in the COP was the minimum for R1234ze(Z)-5.1% less than that of R134a at a 9 bar condenser pressure and 4.7% less than that of R134a at a 1.9 bar evaporator pressure, whereas the COP values of the other refrigerants dropped more drastically at higher condenser pressures. R1234ze(Z) possessed favorable thermodynamic characteristics, with a GWP of 7, and it can serve as an alternative refrigerant for refrigeration systems for a sustainable environment.
  •  
3.
  • Naqvi, Salman Raza, et al. (författare)
  • Agro-industrial residue gasification feasibility in captive power plants : A South-Asian case study
  • 2021
  • Ingår i: Energy. - : Elsevier. - 0360-5442 .- 1873-6785. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study is to build knowledge on the potential of agro-industrial residue gasification (AIRG) for use in captive power generation through a comprehensive case study. In order to evaluate the economic viability, key performance indicators, such as net present value (NPV), levelized cost of electricity (LCOE), and operating costs etc. are studied. The major textile industry located in the Raiwind area of Punjab province of Pakistan has been selected. The effect and variations of the capacity factor has also been studied coupled with the levelized cost of electricity. The agricultural residue as feedstock to the gasifier is rice husk that is the abundantly available in South Asia. Furthermore, the impact of government subsidies on natural gas is also under the scope of the study. The agro-industrial residue gasification system is found to be a potential alternative to furnace oil (FO) or gas-based captive power plants (CPPs). The results of residue-based gasification system imply a large potential when comparing the cost of electricity with national grid electricity during the peak hours. Therefore, the proposed gasification system offers economic incentives when the textile industry potentially utilizes gasification-based electricity during peak hours and national grid electricity during off-peak hours. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
4.
  • Naqvi, Salman Raza, et al. (författare)
  • Potential of biomass for bioenergy in Pakistan based on present case and future perspectives
  • 2018
  • Ingår i: Renewable & sustainable energy reviews. - : Elsevier. - 1364-0321 .- 1879-0690. ; 81:1, s. 1247-1258
  • Forskningsöversikt (refereegranskat)abstract
    • Future energy security and environmental issues are major driving forces for increased biomass utilization globally and especially in developing countries like Pakistan. For efficient utilization of indigenous biomass resources in the future energy mix, it is important to gain knowledge of current energy system in various sectors. Some of the technologies and initiatives are under development to achieve transition from non-renewable resources to renewable resources, and reducing fossil fuel dependency and greenhouse gas emissions. Recently, number of proposals has been presented for the development of sustainable biofuels production methods for promise for accelerating a shift away from an unsustainable approach to possible sustainable production practices or a sustainable social, economic and environment. This article presents an extensive literature review of the biomass-based renewable energy potential in Pakistan based on current energy scenario and future perspectives. It also highlights the availability of the indigenous and local biomass resources and potential biomass conversion technologies to convert such resources to bioenergy. The drivers for utilization of indigenous biomass resources in future energy mix and challenges regarding awareness among stakeholders and R & D to fill knowledge gaps are economically restraints. The article concludes with suggestions on future directions and policies for effective implementation of biomass based renewable energy production.
  •  
5.
  • Arslan, Muhammad, et al. (författare)
  • Impact of Varying Load Conditions and Cooling Energy Comparison of a Double-Inlet Pulse Tube Refrigerator
  • 2020
  • Ingår i: Processes. - : MDPI. - 2227-9717. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling and optimization of a double-inlet pulse tube refrigerator (DIPTR) is very difficult due to its geometry and nature. The objective of this paper was to optimize-DIPTR through experiments with the cold heat exchanger (CHX) along the comparison of cooling load with experimental data using different boundary conditions. To predict its performance, a detailed two-dimensional DIPTR model was developed. A double-drop pulse pipe cooler was used for solving continuity, dynamic and power calculations. External conditions for applicable boundaries include sinusoidal pressure from an end of the tube from a user-defined function and constant temperature or limitations of thermal flux within the outer walls of exchanger walls under colder conditions. The results of the system's cooling behavior were reported, along with the connection between the mass flow rates, heat distribution along pulse tube and cold-end pressure, the cooler load's wall temp profile and cooler loads with varied boundary conditions i.e. opening of 20% double-inlet and 40-60% orifice valves, respectively. Different loading conditions of 1 and 5W were applied on the CHX. At 150 K temperature of the cold-end heat exchanger, a maximum load of 3.7 W was achieved. The results also reveal a strong correlation between computational fluid dynamics modeling results and experimental results of the DIPTR.
  •  
6.
  • Naqvi, Salman Raza, et al. (författare)
  • Recent developments on sewage sludge pyrolysis and its kinetics : Resources recovery, thermogravimetric platforms, and innovative prospects
  • 2021
  • Ingår i: Computers and Chemical Engineering. - : Elsevier. - 0098-1354 .- 1873-4375. ; 150
  • Tidskriftsartikel (refereegranskat)abstract
    • Sewage sludge is a by-product of the wastewater treatment process, which has the potential to be a source of transport fuels, heat, and power using the pyrolysis process. Considering the prevalence and disposal issues associated with sewage sludge, the objective of this study is to critically review the recent advancements in sewage sludge pyrolysis and its kinetics obtained using the thermogravimetric techniques, and other associated different kinetic models documented in the literature. The study will identify optimum operating conditions and design parameters to obtain high yields. The state-of-the-art perspectives and the challenges associated with full-scale implementation are highlighted for biofuels and resource recovery from the sewage sludge. Furthermore, machine-learning approaches in thermal kinetics of pyrolysis are presented and discussed in terms of their effectiveness in predicting thermal kinetics data. Finally, the challenges for a successful implementation and commercial viability of sewage sludge pyrolysis are discussed.
  •  
7.
  • Anees, Hafiz Muhammad, et al. (författare)
  • A mathematical model-based approach for DC multi-microgrid performance evaluations considering intermittent distributed energy resources, energy storage, multiple load classes, and system components variations
  • 2021
  • Ingår i: Energy Science & Engineering. - : John Wiley & Sons. - 2050-0505. ; 9, s. 1919-1934
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficiency of DC microgrid needs investigation from a smart grid perspective, since their spread has expected to prevail in comparison with AC counterparts. Furthermore, there is a need to address the limitations (majorly to cater the intermittency of distributed energy resources (DERs) as well as the time dependency of systematic parameters etc.) in previous model and propose a new mathematical model to evaluate system efficiency for given parameters and scenarios. The core focus of current study aims at formulation of an improved (composite) mathematical model, that is capable of bridging issues and serve as a tool to address requirements of future DC systems including microgrids (MGs) and multi-microgrids (MMGs). This research work offers such a mathematical model that consists of 3D matrices based on newly derived set of discrete time dependent equations, which evaluates the system efficiency of residential DC-MMGs. Each DC-MG is embedded with intermittent DERs, storage, components (with efficiency variations), and multi-class load (with discrete time dependency), for evaluation across worst, normal, and best scenarios. A comprehensive sensitivity analysis across various cases and respective scenarios are also presented to evaluate overall system performance. Also, the impacts of system parameters on various system variables, states, and overall system efficiency have presented in this paper.
  •  
8.
  • Hussain, Arif, et al. (författare)
  • Methoxy-methylheptane as a cleaner fuel additive : An energy- and cost-efficient enhancement for separation and purification units
  • 2021
  • Ingår i: Energy Science & Engineering. - : John Wiley & Sons. - 2050-0505. ; :9, s. 1632-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental protection agencies have begun imposing stringent regulations on the existing refineries to control the levels of gasoline additives. In this context, a novel compound, 2-methoxy-2-methylheptane (MMH), had drawn attention as fuel additive for cleaner combustion. The conventional process of MMH production features three distillation columns in a direct sequence. These columns are used to maintain the required product purities and to utilize the unreacted reactants through recycling streams. The distillation system of the existing MMH plant can afford significant energy savings, leading to a reduction in the total annual costs (TAC). The aim of this investigation is to demonstrate that the reported conventional process can be significantly enhanced by modifying the design and operational parameters and by replacing two distillation columns with an intensified dividing wall column (DWC) configuration. The DWC design is further optimized using several algorithms such as the modified coordinate method (MCD), robust particle swarm paradigm (PSP), and firefly (FF) with nonlinear constraints. Compared to conventional process, the optimized DWC resulted in 24% and 11.5% savings in the plant operating and total annual costs, respectively.
  •  
9.
  • Kazmi, Bilal, et al. (författare)
  • Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy
  • 2022
  • Ingår i: Energy. - : Pergamon Press. - 0360-5442 .- 1873-6785. ; 239
  • Tidskriftsartikel (refereegranskat)abstract
    • The study proposes a novel integrated process in which ionic liquid is utilized to control carbon dioxide (CO2) emissions from the natural gas combined with a single mixed refrigerant-based liquefaction process to assist safe transportation over long distances providing a sustainable and cleaner energy. Commercially amines are utilized for CO2 sequestration, but amines entail energy-intensive regeneration with elevated process costs. The present study offers a solvent screening mechanism based on important parameters such as heat of dissolution, viscosity, selectivity, working capacity, vapor pressure, corrosivity, and toxicity. The selected solvents' performance is computed by sensitivity analysis suggesting imidazolium-based cation 1-hexyl-3-methylimidazolium[Hmim] functionalized with tricyanomethanide(tcm) as anion a potential natural gas sweetening solvent in comparison with commercially used solvent monoethanoloamine(MEA), conventional ILs 1-butyl-3-methylimidazolium hexa-fluorophosphate [Bmim][Pf(6)] and 1-butyl-3-methylimidazolium methyl sulfate [Bmim][MeSO4]. The obtained sweet gas is liquefied using a single mixed refrigerant-based process providing 0.99 mol fraction of liquefied CH4 with less overall specific compression power requirement of 0.41 kW/kg of natural gas. Moreover, an exergy analysis demonstrates that the [Hmim][tcm] based process has lower total exergy destruction of 7.49 x 10(3) kW and is found to utilize less overall specific energy consumption 0.49 kWh/kg of NG in contrast to other studied solvents. Furthermore, a detailed economic analysis establishes [Hmim][tcm]-based CO2 integrated with liquefaction technology offers 50.7%, 74.4%, and 85.8% of total annualized cost (TAC) savings compared with the MEA-amim][Pf(6)]-, and [Bmim][MeSO4], respectively. Hence, [Hmim][tcm] for CO2 removal and integration with liquefaction process will incur unit cost based on the total annualized cost to be $2.2 x 10(4)/kmol of purified NG.
  •  
10.
  • Manzoor, Numair, et al. (författare)
  • RETRACTED: Experimental Study of CO2 Conversion into Methanol by Synthesized Photocatalyst (ZnFe2O4/TiO2) Using Visible Light as an Energy Source
  • 2020
  • Ingår i: Catalysts. - : MDPI. - 2073-4344. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Ozone layer depletion is a serious threat due to the extensive release of greenhouse gases. The emission of carbon dioxide (CO2) from fossil fuel combustion is a major reason for global warming. Energy demands and climate change are coupled with each other. CO2is a major gas contributing to global warming; hence, the conversion of CO2 into useful products such as methanol, formic acid, formaldehyde, etc., under visible light is an attractive topic. Challenges associated with the current research include synthesizing a photocatalyst that is driven by visible light with a narrow band gap range between 2.5 and 3.0 eV, the separation of a mixed end product, and the two to three times faster recombination rate of an electron–hole pair compared with separation over yield. The purpose of the current research is to convert CO2 into useful fuel i.e., methanol; the current study focuses on the photocatalytic reduction of CO2into a useful product. This research is based on the profound analysis of published work, which allows the selection of appropriate methods and material for this research. In this study, zinc ferrite (ZnFe2O4) is synthesized via the modified sol–gel method and coupled with titanium dioxide (TiO2). Thereafter, the catalyst is characterized by Fourier transform infrared (FTIR), FE-SEM, UV–Vis, and XRD characterization techniques. UV–Vis illustrates that the synthesized catalyst has a low band gap and utilizes a major portion of visible light irradiation. The XRD pattern was confirmed by the formation of the desired catalyst. FE-SEM illustrated that the size of the catalyst ranges from 50 to 500 nm and BET analysis determined the surface area, which was 2.213 and 6.453 m2/g for ZnFe2O4 and ZnFe2O4/TiO2, respectively. The continuous gas flow photoreactor was used to study the activity of the synthesized catalyst, while titanium dioxide (TiO2) has been coupled with zinc ferrite (ZnFe2O4) under visible light in order to obtain the maximum yield of methanol as a single product and simultaneously avoid the conversion of CO2 into multiple products. The performance of ZnFe2O4/TiO2was mainly assessed through methanol yield with a variable amount of TiO2 over ZnFe2O4 (1:1, 1:2, 2:1, 1:3, and 3:1). The synthesized catalyst recycling ability has been tested up to five cycles. Finally, we concluded that the optimum conditions for maximum yield were found to be a calcination temperature of ZnFe2O4at 900 °C, and optimum yield was at a 1:1 w/w coupling ratio of ZnFe2O4/TiO2. It was observed that due to the enhancement in the electron–hole pair lifetime, the methanol yield at 141.22 μmol/gcat·h over ZnFe2O4/TiO2was found to be 7% higher than the earlier reported data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42
Typ av publikation
tidskriftsartikel (26)
konferensbidrag (5)
forskningsöversikt (5)
bokkapitel (5)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Naqvi, Salman Raza (28)
Naqvi, Muhammad, 198 ... (18)
Naqvi, Muhammad (10)
Shahbaz, Muhammad (4)
Yan, Jinyue (4)
Ali, Imtiaz (3)
visa fler...
Farooq, Muhammad (3)
Zhu, B. (2)
Usman, Muhammad (2)
Rafique, Asia (2)
Tariq, Rumaisa (2)
Anukam, Anthony (2)
Nawaz, Saad (2)
Abas, Naeem (1)
Kalair, Ali Raza (1)
Seyedmahmoudian, Meh ... (1)
Campana, Pietro Elia ... (1)
Khan, Nasrullah (1)
Abbas, Ghazanfar (1)
Raza, Rizwan (1)
Ahmad, M. Ashfaq (1)
Asam, Zaki-ul-Zaman (1)
Imran, Muhammad (1)
Ali, A. (1)
Afroz, Laila (1)
Rafaqat, Muhammad (1)
Bashir, Tariq, 1981- (1)
Mustafa, Ghulam M (1)
Lund, P. D. (1)
Aslam, Muhammad (1)
Shakir, I. (1)
Dahlquist, Erik, 195 ... (1)
Ali, I (1)
Gao, Ningbo (1)
Ali, Majid (1)
Ahmad, D. (1)
Rashid, Muhammad Imt ... (1)
Ali, Qasim (1)
Hussain, Sadiq (1)
Anees, Hafiz Muhamma ... (1)
Kazmi, Syed Ali Abba ... (1)
Dastgeer, Faizan (1)
Gelani, Hassan Ertez ... (1)
Sadiq, Muhammad (1)
Arslan, Muhammad (1)
Sultan, Umair (1)
Tahir, Zia-ur-Rehman (1)
Waheed, Nazim (1)
Tariq, M. Suleman (1)
Chaudhry, Ijaz Ahmad (1)
visa färre...
Lärosäte
Karlstads universitet (34)
Mälardalens universitet (15)
Kungliga Tekniska Högskolan (4)
Chalmers tekniska högskola (3)
Högskolan i Borås (1)
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Teknik (39)
Naturvetenskap (4)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy