SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Narvanen Ale) "

Sökning: WFRF:(Narvanen Ale)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hyvonen, Maija, et al. (författare)
  • Novel Target for Peptide-Based Imaging and Treatment of Brain Tumors
  • 2014
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 13:4, s. 996-1007
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant gliomas are associated with high mortality due to infiltrative growth, recurrence, and malignant progression. Even with the most efficient therapy combinations, median survival of the glioblastoma multiforme (grade 4) patients is less than 15 months. Therefore, new treatment approaches are urgently needed. We describe here identification of a novel homing peptide that recognizes tumor vessels and invasive tumor satellites in glioblastomas. We demonstrate successful brain tumor imaging using radiolabeled peptide in whole-body SPECT/CT imaging. Peptide-targeted delivery of chemotherapeutics prolonged the lifespan of mice bearing invasive brain tumors and significantly reduced the number of tumor satellites compared with the free drug. Moreover, we identified mammary-derived growth inhibitor (MDGI/H-FABP/FABP3) as the interacting partner for our peptide on brain tumor tissue. MDGI was expressed in human brain tumor specimens in a grade-dependent manner and its expression positively correlated with the histologic grade of the tumor, suggesting MDGI as a novel marker for malignant gliomas. Mol Cancer Ther; 13(4); 996-1007. (C)2014 AACR.
  •  
2.
  •  
3.
  • Rytkonen, Jussi, et al. (författare)
  • Porous Silicon-Cell Penetrating Peptide Hybrid Nanocarrier for Intracellular Delivery of Oligonucleotides
  • 2014
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 11:2, s. 382-390
  • Tidskriftsartikel (refereegranskat)abstract
    • The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.
  •  
4.
  • Saar, Indrek, et al. (författare)
  • Novel systemically active galanin receptor 2 ligands in depression-like behavior
  • 2013
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 127:1, s. 114-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptide galanin and its three G-protein coupled receptors, galanin receptor type 1-galanin receptor type 3 (GalR1-GalR3), are involved in the regulation of numerous physiological and disease processes, and thus represent tremendous potential in neuroscience research and novel drug lead development. One of the areas where galanin is involved is depression. Previous studies have suggested that activation of GalR2 leads to attenuation of depression-like behavior. Unfortunately, lack of in vivo usable subtype specific ligands hinders testing the role of galanin in depression mechanisms. In this article, we utilize an approach of increasing in vivo usability of peptide-based ligands, acting upon CNS. Thus, we have synthesized a series of novel systemically active galanin analogs, with modest preferential binding toward GalR2. We have shown that specific chemical modifications to the galanin backbone increase brain levels upon i.v. injection of the peptides. Several of the new peptides, similar to a common clinically used antidepressant medication imipramine, exerted antidepressant-like effect in forced swim test, a mouse model of depression, at a surprisingly low dose range (<0.5mg/kg). We chose one of the peptides, J18, for more thorough study, and showed its efficacy also in another mouse depression model (tail suspension test), and demonstrated that its antidepressant-like effect upon i.v. administration can be blocked by i.c.v. galanin receptor antagonist M35. The effect of the J18 was also abolished in GalR2KO animals. All this suggests that systemically administered peptide analog J18 exerts its biological effect through activation of GalR2 in the brain. The novel galanin analogs represent potential drug leads and a novel pharmaceutical intervention for depression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy