SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naseer Muzammal) "

Sökning: WFRF:(Naseer Muzammal)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hanif, Asif, et al. (författare)
  • Frequency Domain Adversarial Training for Robust Volumetric Medical Segmentation
  • 2023
  • Ingår i: MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II. - : SPRINGER INTERNATIONAL PUBLISHING AG. - 9783031438943 - 9783031438950 ; , s. 457-467
  • Konferensbidrag (refereegranskat)abstract
    • It is imperative to ensure the robustness of deep learning models in critical applications such as, healthcare. While recent advances in deep learning have improved the performance of volumetric medical image segmentation models, these models cannot be deployed for real-world applications immediately due to their vulnerability to adversarial attacks. We present a 3D frequency domain adversarial attack for volumetric medical image segmentation models and demonstrate its advantages over conventional input or voxel domain attacks. Using our proposed attack, we introduce a novel frequency domain adversarial training approach for optimizing a robust model against voxel and frequency domain attacks. Moreover, we propose frequency consistency loss to regulate our frequency domain adversarial training that achieves a better tradeoff between model's performance on clean and adversarial samples. Code is available at https://github.com/asif-hanif/vafa.
  •  
2.
  • Khan, Salman, et al. (författare)
  • Transformers in Vision: A Survey
  • 2022
  • Ingår i: ACM Computing Surveys. - : ASSOC COMPUTING MACHINERY. - 0360-0300 .- 1557-7341. ; 54:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision.
  •  
3.
  • Khattak, Muhammad Uzair, et al. (författare)
  • Self-regulating Prompts: Foundational Model Adaptation without Forgetting
  • 2023
  • Ingår i: 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023). - : IEEE COMPUTER SOC. - 9798350307184 - 9798350307191 ; , s. 15144-15154
  • Konferensbidrag (refereegranskat)abstract
    • Prompt learning has emerged as an efficient alternative for fine-tuning foundational models, such as CLIP, for various downstream tasks. Conventionally trained using the task-specific objective, i.e., cross-entropy loss, prompts tend to overfit downstream data distributions and find it challenging to capture task-agnostic general features from the frozen CLIP. This leads to the loss of the model's original generalization capability. To address this issue, our work introduces a self-regularization framework for prompting called PromptSRC (Prompting with Self-regulating Constraints). PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations using a three-pronged approach by: (a) regulating prompted representations via mutual agreement maximization with the frozen model, (b) regulating with selfensemble of prompts over the training trajectory to encode their complementary strengths, and (c) regulating with textual diversity to mitigate sample diversity imbalance with the visual branch. To the best of our knowledge, this is the first regularization framework for prompt learning that avoids overfitting by jointly attending to pre-trained model features, the training trajectory during prompting, and the textual diversity. PromptSRC explicitly steers the prompts to learn a representation space that maximizes performance on downstream tasks without compromising CLIP generalization. We perform extensive experiments on 4 benchmarks where PromptSRC overall performs favorably well compared to the existing methods. Our code and pre-trained models are publicly available at: https://github.com/muzairkhattak/PromptSRC.
  •  
4.
  • Kunhimon, Shahina, et al. (författare)
  • Learnable weight initialization for volumetric medical image segmentation
  • 2024
  • Ingår i: Artificial Intelligence in Medicine. - : ELSEVIER. - 0933-3657 .- 1873-2860. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid volumetric medical image segmentation models, combining the advantages of local convolution and global attention, have recently received considerable attention. While mainly focusing on architectural modifications, most existing hybrid approaches still use conventional data-independent weight initialization schemes which restrict their performance due to ignoring the inherent volumetric nature of the medical data. To address this issue, we propose a learnable weight initialization approach that utilizes the available medical training data to effectively learn the contextual and structural cues via the proposed self-supervised objectives. Our approach is easy to integrate into any hybrid model and requires no external training data. Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach, leading to stateof-the-art segmentation performance. Our proposed data-dependent initialization approach performs favorably as compared to the Swin-UNETR model pretrained using large-scale datasets on multi-organ segmentation task. Our source code and models are available at: https://github.com/ShahinaKK/LWI-VMS.
  •  
5.
  • Naseer, Muzammal, et al. (författare)
  • Cross-Domain Transferability of Adversarial Perturbations
  • 2019
  • Ingår i: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019). - : NEURAL INFORMATION PROCESSING SYSTEMS (NIPS).
  • Konferensbidrag (refereegranskat)abstract
    • Adversarial examples reveal the blind spots of deep neural networks (DNNs) and represent a major concern for security-critical applications. The transferability of adversarial examples makes real-world attacks possible in black-box settings, where the attacker is forbidden to access the internal parameters of the model. The underlying assumption in most adversary generation methods, whether learning an instance-specific or an instance-agnostic perturbation, is the direct or indirect reliance on the original domain-specific data distribution. In this work, for the first time, we demonstrate the existence of domain-invariant adversaries, thereby showing common adversarial space among different datasets and models. To this end, we propose a framework capable of launching highly transferable attacks that crafts adversarial patterns to mislead networks trained on entirely different domains. For instance, an adversarial function learned on Paintings, Cartoons or Medical images can successfully perturb ImageNet samples to fool the classifier, with success rates as high as similar to 99% (l(infinity) <= 10). The core of our proposed adversarial function is a generative network that is trained using a relativistic supervisory signal that enables domain-invariant perturbations. Our approach sets the new state-of-the-art for fooling rates, both under the white-box and black-box scenarios. Furthermore, despite being an instance-agnostic perturbation function, our attack outperforms the conventionally much stronger instance-specific attack methods.
  •  
6.
  • Naseer, Muzammal, et al. (författare)
  • Guidance Through Surrogate: Toward a Generic Diagnostic Attack
  • 2022
  • Ingår i: IEEE Transactions on Neural Networks and Learning Systems. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2162-237X .- 2162-2388.
  • Tidskriftsartikel (refereegranskat)abstract
    • Adversarial training (AT) is an effective approach to making deep neural networks robust against adversarial attacks. Recently, different AT defenses are proposed that not only maintain a high clean accuracy but also show significant robustness against popular and well-studied adversarial attacks, such as projected gradient descent (PGD). High adversarial robustness can also arise if an attack fails to find adversarial gradient directions, a phenomenon known as "gradient masking." In this work, we analyze the effect of label smoothing on AT as one of the potential causes of gradient masking. We then develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed guided projected gradient attack (G-PGA). Our attack approach is based on a "match and deceive" loss that finds optimal adversarial directions through guidance from a surrogate model. Our modified attack does not require random restarts a large number of attack iterations or a search for optimal step size. Furthermore, our proposed G-PGA is generic, thus it can be combined with an ensemble attack strategy as we demonstrate in the case of auto-attack, leading to efficiency and convergence speed improvements. More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
  •  
7.
  • Naseer, Muzammal, et al. (författare)
  • On Generating Transferable Targeted Perturbations
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021). - : IEEE. - 9781665428125 - 9781665428132 ; , s. 7688-7697
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • While the untargeted black-box transferability of adversarial perturbations has been extensively studied before, changing an unseen model's decisions to a specific `targeted' class remains a challenging feat. In this paper, we propose a new generative approach for highly transferable targeted perturbations (\ours). We note that the existing methods are less suitable for this task due to their reliance on class-boundary information that changes from one model to another, thus reducing transferability. In contrast, our approach matches the perturbed image `distribution' with that of the target class, leading to high targeted transferability rates. To this end, we propose a new objective function that not only aligns the global distributions of source and target images, but also matches the local neighbourhood structure between the two domains. Based on the proposed objective, we train a generator function that can adaptively synthesize perturbations specific to a given input. Our generative approach is independent of the source or target domain labels, while consistently performs well against state-of-the-art methods on a wide range of attack settings. As an example, we achieve 32.63% target transferability from (an adversarially weak) VGG19BN to (a strong) WideResNet on ImageNet val. set, which is 4× higher than the previous best generative attack and 16× better than instance-specific iterative attack. 
  •  
8.
  •  
9.
  • Naseer, Muzammal, et al. (författare)
  • Stylized Adversarial Defense
  • 2023
  • Ingår i: IEEE Transactions on Pattern Analysis and Machine Intelligence. - : IEEE COMPUTER SOC. - 0162-8828 .- 1939-3539. ; 45:5, s. 6403-6414
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross-entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model. Specifically, we use the style and content information of the target sample from another class, alongside its class-boundary information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and the target image. Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses, generalizes well to naturally occurring corruptions and data distributional shifts, and retains the models accuracy on clean examples.
  •  
10.
  • Ranasinghe, Kanchana, et al. (författare)
  • Orthogonal Projection Loss
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021). - : IEEE. - 9781665428125 ; , s. 12313-12323
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Deep neural networks have achieved remarkable performance on a range of classification tasks, with softmax cross-entropy (CE) loss emerging as the de-facto objective function. The CE loss encourages features of a class to have a higher projection score on the true class-vector compared to the negative classes. However, this is a relative constraint and does not explicitly force different class features to be well-separated. Motivated by the observation that ground-truth class representations in CE loss are orthogonal (one-hot encoded vectors), we develop a novel loss function termed `Orthogonal Projection Loss' (OPL) which imposes orthogonality in the feature space. OPL augments the properties of CE loss and directly enforces inter-class separation alongside intra-class clustering in the feature space through orthogonality constraints on the mini-batch level. As compared to other alternatives of CE, OPL offers unique advantages e.g., no additional learnable parameters, does not require careful negative mining and is not sensitive to the batch size. Given the plug-and-play nature of OPL, we evaluate it on a diverse range of tasks including image recognition (CIFAR-100), large-scale classification (ImageNet), domain generalization (PACS) and few-shot learning (miniImageNet, CIFAR-FS, tiered-ImageNet and Meta-dataset) and demonstrate its effectiveness across the board. Furthermore, OPL offers better robustness against practical nuisances such as adversarial attacks and label noise. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy