SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Navacchia Maria Luisa) "

Search: WFRF:(Navacchia Maria Luisa)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Khaliha, Sara, et al. (author)
  • Defective graphene nanosheets for drinking water purification : Adsorption mechanism, performance, and recovery
  • 2021
  • In: FlatChem. - : Elsevier. - 2452-2627. ; 29
  • Journal article (peer-reviewed)abstract
    • Defect-rich graphene oxide (dGO) was used as sorbent for organic contaminants of emerging concern in tap water, including drugs and dyes, and the performance compared to those of lower-defects graphene types. The role of holes and carbonyl- carboxylic groups on graphene nanosheets surface on the adsorption mechanism and efficiency was investigated. dGO showed enhanced adsorption capacity toward two fluoroquinolone antibiotics (ofloxacin, OFLOX, and ciprofloxacin, CIPRO) in tap water with a maximum capacity of 650 mg/g, compared to 204 mg/g for Hummers derived commercial GO (hGO) and 125 mg/g for less defected Brodie derived GO (bGO) for OFLOX. The role of defects on the selective adsorption of OFLOX was also modelled by MD simulations, highlighting a mechanism mainly driven by the shape complementarity between the graphene holes and the molecules. Adsorption isotherms revealed different adsorption model for dGO, with a Langmuir fitting for dGO and BET fitting for all the other investigated samples. The maximum adsorption capacity of dGO for OFLOX was about six times higher than that of Granular Activated Carbon (95 mg/g), the industrial adsorption standard technology. Finally, it was also demonstrated that dGO can be recovered from treated water by ultrafiltration, this preventing secondary contamination risks and enabling safe use of graphene nanosheets for water purification.
  •  
2.
  • Khaliha, Sara, et al. (author)
  • Upcycling of plastic membrane industrial scraps and reuse as sorbent for emerging contaminants in water
  • 2024
  • In: Environmental Science: Water Research and Technology. - 2053-1419 .- 2053-1400. ; 10:5, s. 1097-1107
  • Journal article (peer-reviewed)abstract
    • Scraps obtained as waste of the industrial production of polysulfone and polysulfone-graphene oxide hollow fiber membranes (PSU-HF and PSU-GO-HF, respectively) were converted into granular materials and used as sorbents of several classes of emerging and standard water contaminants, such as drugs, heavy metal ions, and a mixture of per- and poly-fluoroalkyl substances (PFASs). The millimetric sized granules (PSU and PSU-GO, respectively) outperformed granular activated carbon (GAC), the industrial sorbent benchmark, in the adsorption of lead, diclofenac, and PFOA from tap water. Adsorption mechanism insight was achieved by molecular dynamics simulations, demonstrating the key role of graphene oxide (GO) on PSU-GO material performance. With respect to GAC, PSU-GO adsorption capacity was two times higher for diclofenac and PFOA and ten times higher for lead. Material safety was assessed by surface enhanced Raman spectroscopy, excluding GO nanosheets leaching, and combined potability test. Overall, our work proves that scrap conversion and reuse is a valuable strategy to reduce plastic industrial waste disposal and to integrate standard technology for enhanced water purification.
  •  
3.
  • Kovtun, Alessandro, et al. (author)
  • Core-shell graphene oxide-polymer hollow fibers as water filters with enhanced performance and selectivity
  • 2021
  • In: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 227, s. 274-290
  • Journal article (peer-reviewed)abstract
    • Commercial hollow fiber filters for micro- and ultrafiltration are based on size exclusion and do not allow the removal of small molecules such as antibiotics. Here, we demonstrate that a graphene oxide (GO) layer can be firmly immobilized either inside or outside polyethersulfone-polyvinylpyrrolidone hollow fiber (Versatile PES (R), hereafter PES) modules and that the resulting core-shell fibers inherits the microfiltration ability of the pristine PES fibers and the adsorption selectivity of GO. GO nanosheets were deposited on the fiber surface by filtration of a GO suspension through a PES cartridge (cut-off 0.1-0.2 mu m), then fixed by thermal annealing at 80 degrees C, rendering the GO coating stably fixed and unsoluble. The filtration cut-off, retention selectivity and efficiency of the resulting inner and outer modified hollow fibers (HF-GO) were tested by performing filtration on water and bovine plasma spiked with bovine serum albumin (BSA, 66 kDa, approximate to 15 nm size), monodisperse polystyrene nanoparticles (52 nm and 303 nm sizes), with two quinolonic antibiotics (ciprofloxacin and ofloxacin) and rhodamine B (RhB). These tests showed that the microfiltration capability of PES was retained by HF-GO, and in addition the GO coating can capture the molecular contaminants while letting through BSA and smaller polystyrene nanoparticles. Combined XRD, molecular modelling and adsorption experiments show that the separation mechanism does not rely only on physical size exclusion, but involves intercalation of solute molecules between the GO layers.
  •  
4.
  • Kovtun, Alessandro, et al. (author)
  • Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment
  • 2019
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 11:11, s. 22780-22787
  • Journal article (peer-reviewed)abstract
    • The availability of clean, pure water is a major challenge for the future of our society. 2-Dimensional nanosheets of GO seem promising as nanoporous adsorbent or filters for water purification; however, their processing in macroscopic filters is challenging, and their cost vs. standard polymer filters is too high. Here, we describe a novel approach to combine graphene oxide (GO) sheets with commercial polysulfone (PSU) membranes for improved removal of organic contaminants from water. The adsorption physics of contaminants on the PSU-GO composite follows Langmuir and Brunauer–Emmett–Teller (BET) models, with partial swelling and intercalation of molecules in between the GO layers. Such a mechanism, well-known in layered clays, has not been reported previously for graphene or GO. Our approach requires minimal amounts of GO, deposited directly on the surface of the polymer, followed by stabilization using microwaves or heat. The purification efficiency of the PSU-GO composites is significantly improved vs. benchmark commercial PSU, as demonstrated by the removal of two model contaminants, rhodamine B and ofloxacin. The excellent stability of the composite is confirmed by extensive (100 hours) filtration tests in commercial water cartridges.
  •  
5.
  • Kovtun, Alessandro, et al. (author)
  • Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water
  • 2020
  • In: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 259:November 2020
  • Journal article (peer-reviewed)abstract
    • Due to water depletion and increasing level of pollution from standard and emerging contaminants, the development of more efficient purification materials and technology for drinking water treatment is a crucial challenge to be addressed in the near future. Graphene oxide (GO) has been pointed as one of the most promising materials to build structure and devices for new adsorbents and filtration systems. Here, we analyzed two types of GO doped 3D chitosan-gelatin aerogels with GO sheets embedded in the bulk or deposited on the surface. Through combined structural characterization and adsorption tests on selected proxies of drinking water micropollutants, we compared both GO-embedded and GO-coated materials and established the best architecture for achieving enhanced removal efficiency toward con- taminants in water. To evaluate the best configuration, we studied the adsorption capacity of both systems on two organic molecules (i.e., fluoroquinolonic antibiotics ofloxacin and ciprofloxacin) and a heavy metal (lead Pb2þ) of great environmental relevance and with already proved high affinity for GO. The Pb monolayer maximum adsorption capacity qmax was 11.1 mg/g for embedded GO aerogels and 1.5 mg/g in coated GO-ones. Only minor differences were found for organic contaminants between coating and embedding approaches with an adsorption capacity of 5e8 mg/g and no adsorption was found for chitosan-gelatin control aerogels without GO. Finally, potential antimicrobial effects were found particularly for the GO-coated aerogels materials, thus corroborating the multifunctionality of the newly developed porous structures.
  •  
6.
  • Mantovani, Sebastiano, et al. (author)
  • Amino acid-driven adsorption of emerging contaminants in water by modified graphene oxide nanosheets
  • 2023
  • In: Environmental Science: Water Research and Technology. - : Royal Society of Chemistry (RSC). - 2053-1419 .- 2053-1400. ; 9:4, s. 1030-1040
  • Journal article (peer-reviewed)abstract
    • Graphene oxide nanosheets have shown promising adsorption properties toward emerging organic contaminants in drinking water. Here, we report a family of graphene oxide nanosheets covalently modified with amino acids and the study on their adsorption properties toward a mixture of selected contaminants, including pharmaceuticals, additives, and dyes. Graphene oxides modified with l-glutamic acid and l-methionine (GO-Glu and GO-Met) were synthesized and purified with a scalable and fast synthetic and purification procedure, and their structure was studied by combined X-ray photoelectron spectroscopy and elemental analysis. An amino acid loading of about 5% and a slight reduction (from 27% down to 14-20% oxygen) were found and associated with the adsorption selectivity. They were compared to unmodified GO, reduced GO (rGO), GO-lysine, and to the reference sample GO-NaOH. Each type of modified GO possesses a higher adsorption capacity toward bisphenol A (BPA), benzophenone-4 (BP4), and carbamazepine (CBZ) than standard GO and rGO, and the adsorption occurred within the first hour of contact time. The maximum adsorption capacity (estimated from the adsorption isotherms) was strictly related to the amino acid loading. Accordingly, molecular dynamics simulations highlighted higher interaction energies for the modified GOs than unmodified GO, as a result of higher van der Waals and hydrophobic interactions between the contaminants and the amino acid side chains on the nanosheet surface.
  •  
7.
  • Posati, Tamara, et al. (author)
  • Polydopamine Nanoparticle-Coated Polysulfone Porous Granules as Adsorbents for Water Remediation
  • 2019
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:3, s. 4839-4847
  • Journal article (peer-reviewed)abstract
    • Water purification technologies possibly based on eco-sustainable, low cost, and multifunctional materials are being intensively pursued to resolve the current water scarcity and pollution. In this scenario, polysulfone hollow porous granules (PS-HPGs) prepared from scraps of the industrial production of polysulfone hollow fiber membranes were recently introduced as adsorbents and filtration materials for water and air treatment. Here, we report the functionalization of PS-HPGs with polydopamine (PD) nanoparticles for the preparation of a new versatile and efficient adsorbent material, namely, PSPD-HPGs. The in situ growth of PD under mild alkaline oxidative polymerization allowed us to stably graft PD on polysulfone granules. Enhanced removal efficiency of ofloxacin, an antibiotic drug, with an improvement up to 70% with respect to the pristine PS-HPGs, and removal of Zn(II) and Ni(II) were also observed after PD modification. Remarkably, removal of Cu(II) ions with an efficiency up to 80% was observed for PSPD-HPGs, whereas no adsorption was found for the PD-free precursor. Collectively, these data show that modification with a biocompatible polymer such as PD provides a simple and valuable tool to enlarge the field of application of polysulfone hollow granules for water remediation from both organic and metal cation contaminants.
  •  
8.
  • Tunioli, Francesca, et al. (author)
  • Adsorption of emerging contaminants by graphene related materials and their alginate composite hydrogels
  • 2023
  • In: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437 .- 2213-2929. ; 11:2
  • Journal article (peer-reviewed)abstract
    • Graphene nanosheets and nanoplatelets -alginate composite hydrogels were prepared by ionic gelation and the resulting gel beads were exploited for the removal of a mixture of eight selected emerging contaminants (ECs) in tap water, including bisphenol A, ofloxacin and diclofenac. The role of graphene related materials (GRM) on the gel bead structure, adsorption selectivity, kinetic, mechanism, and efficiency was investigated. Combined Scanning Electron Microscopy (SEM) and confocal Raman microscopy mapping showed a porous structure with pore size in the range of 100–200 µm and a homogeneous distribution of graphene nanosheets or nanoplatelets at the pores surface. The adsorption kinetic of GRM was much faster than that of granular activated carbon (GAC), the industrial sorbent benchmark, with removal capacity of ofloxacin from 2.9 to 4.3 times higher. A maximum adsorption capacity of 178 mg/g for rhodamine B was estimated by adsorption isotherm studies for reduced graphene oxide-based beads (a value comparable to that of powered activated carbon). Regeneration test performed on saturated beads by washing with EtOH, and subsequent reiterated reuses, showed no loss of adsorption performance up to the fourth reuse cycle.
  •  
9.
  • Tunioli, Francesca, et al. (author)
  • Chemical Tailoring of β-Cyclodextrin-Graphene Oxide for Enhanced Per- and Polyfluoroalkyl Substances (PFAS) Adsorption from Drinking Water
  • 2023
  • In: Chemistry - A European Journal. - 1521-3765 .- 0947-6539. ; 29:60
  • Journal article (peer-reviewed)abstract
    • We report on the synthesis of β-cyclodextrin (βCD) modified graphene oxide (GO) nanosheets, having different sized alkyl linkers (GO-Cn-βCD) and their exploitation as sorbent of per- and polyfluoroalkyl substances (PFAS) from drinking water. βCD were functionalized with a pending amino group, and the resulting precursors grafted to GO nanosheets by epoxide ring opening reaction. Loading of βCD units in the range 12 %–36 % was estimated by combined XPS and elemental analysis. Adsorption tests on perfluorobutanoic acid (PFBA), a particularly persistent PFAS selected as case study, revealed a strong influence of the alkyl linker length on the adsorption efficiency, with the hexyl linker derivative GO-C6-βCD outperforming both pristine GO and granular activated carbon (GAC), the standard sorbent benchmark. Molecular dynamic simulations ascribed this evidence to the favorable orientation of the βCD unit on the surface of GO which enables a strong contaminant molecules retention.
  •  
10.
  • Zambianchi, Massimo, et al. (author)
  • Graphene oxide-polysulfone hollow fibers membranes with synergic ultrafiltration and adsorption for enhanced drinking water treatment
  • 2022
  • In: Journal of Membrane Science. - : Elsevier BV. - 1873-3123 .- 0376-7388. ; 658
  • Journal article (peer-reviewed)abstract
    • Polysulfone-graphene oxide hollow fiber membranes (PSU-GO HFs) with simultaneous adsorption and ultrafiltration capabilities are herein described and proposed for enhanced and simplified Point-of-Use (POU) drinking water purification. The PSU-GO HFs were prepared by phase inversion extrusion by a customized semi-industrial plant and their morphology, surface properties, and porosity were investigated by combined Scanning Electron Microscopy (SEM), contact angle and Raman confocal microscopy, in relation to different GO:PSU ratios (1–5% w/w GO vs PSU) and to the final adsorption-ultrafiltration properties. Filtration modules of PSU-GO HFs of filtering surface (FS) in the range 0,015–0,28 m2 showed same ultrafiltration capability of PSU-HF standard filters. Synergic adsorption properties were demonstrated by studying the adsorption maximum capacity of ciprofloxacin antibiotic (CIPRO) vs GO ratio in dead end in-out configuration, the standard configuration used for PSU HFs commercial modules. Loading of 3,5% GO vs PSU was selected as case study, representing the best compromise between performance and GO nanofiller amount. Heavy metals (Pb, Cu and Cr(III)) and polyfluoroalkyl substances (PFAS) removal capabilities from tap water were competitive and in some cases outperformed Granular Activated Carbon (GAC), the standard industrial sorbent. Ciprofloxacin removal from tap water was also under real operational conditions. Moreover, release of GO from working PSU-GO modules was excluded by Surface Enhanced Raman Spectroscopy (SERS) analysis of treated water having the state-of-the-art limit of quantification of 0.1 μg/L for GO nanosheets.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view