SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Navis Marit) "

Sökning: WFRF:(Navis Marit)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haileselassie, Yeneneh, et al. (författare)
  • Lactobacillus reuteri and Staphylococcus aureus differentially influence the generation of monocyte-derived dendritic cells and subsequent autologous T cell responses
  • 2016
  • Ingår i: Immunity, Inflammation and Disease. - : Wiley. - 2050-4527. ; 4:3, s. 315-326
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In early-life, the immature mucosal barrier allows contact between the gut microbiota and the developing immune system. Due to their strategic location and their ability to sample luminal antigen, dendritic cells (DC) play a central role in the interaction of microbes and immune cells in the gut. Here, we investigated how two bacteria associated with opposite immune profiles in children, that is, Lactobacillus (L.) reuteri and Staphylococcus (S.) aureus, influenced the differentiation of monocytes in vitro as well how the generated DC impacted T cell responses.Methods: We exposed monocyte cultures to cell-free supernatants (CFS) from these bacteria during their differentiation to DC.Results: The presence of L. reuteri-CFS during DC differentiation resulted in DC with a more mature phenotype, in terms of up-regulated surface markers (HLA-DR, CD86, CD83, CCR7) and enhanced cytokine production (IL6, IL10, and IL23), but had a reduced phagocytic capacity compared with non-treated monocyte-derived DC (Mo-DC). However, upon LPS activation, L. reuteri-CFS-generated DC displayed a more regulated phenotype than control Mo-DC with notable reduction of cytokine responses both at mRNA and protein levels. In contrast, S. aureus-CFS-generated DC were more similar to control Mo-DC both without and after LPS stimulation, but they were still able to induce responses in autologous T cells, in the absence of further T cell stimulation.Conclusions: We show that bacterial signals during DC differentiation have a profound impact on DC function and possibly also for shaping the T cell pool.
  •  
2.
  • Haileselassie, Yeneneh, 1983-, et al. (författare)
  • Postbiotic Modulation of retinoic acid imprinted Mucosal-like Dendritic cells by Probiotic Lactobacillus reuteri 17938 In Vitro
  • 2016
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 7, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lactobacilli are widely used as probiotics with beneficial effects on infection-associated diarrhea, but also used in clinical trials of e.g., necrotizing enterocolitis and inflammatory bowel diseases. The possibility of using probiotic metabolic products, so-called postbiotics, is desirable as it could prevent possible side effects of live bacteria in individuals with a disturbed gut epithelial barrier. Here, we studied how Lactobacillus reuteri DSM 17938 cell-free supernatant (L. reuteri-CFS) influenced retinoic acid (RA)-driven mucosal-like dendritic cells (DC) and their subsequent effect on T regulatory cells (Treg) in vitro. RA clearly imprinted a mucosal-like DC phenotype with higher IL10 production, increased CD103 and CD1d expression, and a downregulated mRNA expression of several inflammatory-associated genes (NFκB1, RELB, and TNF). Treatment with L. reuteri-CFS further influenced the tolerogenic phenotype of RA-DC by downregulating most genes involved in antigen uptake, antigen presentation, and signal transduction as well as several chemokine receptors, while upregulating IL10 production. L. reuteri-CFS also augmented CCR7 expression on RA-DC. In cocultures, RA-DC increased IL10 and FOXP3 expression in Treg, but pre-treatment with L. reuteri-CFS did not further influence the Treg phenotype. In conclusion, L. reuteri-CFS modulates the phenotype and function of mucosal-like DC, implicating its potential application as postbiotic.
  •  
3.
  • Khan Mirzaei, Mohammadali, 1981-, et al. (författare)
  • Immunogenic profiling of structurally distinct bacteriophages and their interaction with human cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Due to a global increase in the range and number of infections caused by multi-resistant bacteria, 11 phage therapy is currently experiencing a resurgence of interest. However, there are a number of 12 well-known concerns over the use of phages to treat bacterial infections. In order to address concerns 13 over safety and the poorly understood pharmacokinetics of phages and their associated cocktails, 14 immunological characterization is required. In the current investigation, the immunogenicity of four 15 distinct phages and their interaction with donor derived peripheral blood mononuclear cells and 16 immortalized cell lines (HT-29 and Caco-2 intestinal epithelial cells) were investigated using 17 standard immunological techniques. When exposed to high phage concentrations (109 PFU/well), 18 cytokine driven inflammatory responses were induced from all cell types. Although phages appeared 19 to inhibit the growth of intestinal epithelial cell lines, they also appear to be non-cytotoxic. Despite 20 co-incubation with different cell types, phages maintained a high killing efficiency, reducing 21 extended-spectrum beta-lactamase-producing Escherichia coli numbers by 1-4 log10 compared to 22 untreated controls. Phages were also able to actively reproduce in the presence of human cells 23 resulting in an approximately 2 log10 increase in phage titer compared to the initial inoculum. 24 Through an increased understanding of the complex pharmacokinetics of phages, it may be possible 25 to address some of the safety concerns surrounding phage preparations prior to creating new 26 therapeutic strategies.
  •  
4.
  • Khan Mirzaei, Mohammadali, et al. (författare)
  • Morphologically Distinct Escherichia coli Bacteriophages Differ in Their Efficacy and Ability to Stimulate Cytokine Release In Vitro
  • 2016
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to a global increase in the range and number of infections caused by multi resistant bacteria, phage therapy is currently experiencing a resurgence of interest. However, there are a number of well-known concerns over the use of phages to treat bacterial infections. In order to address concerns over safety and the poorly understood pharmacokinetics of phages and their associated cocktails, immunological characterization is required. In the current investigation, the immunogenicity of four distinct phages (taken from the main families that comprise the Caudovirales order) and their interaction with donor derived peripheral blood mononuclear cells and immortalized cell lines (HT-29 and Caco-2 intestinal epithelial cells) were investigated using standard immunological techniques. When exposed to high phage concentrations (10(9) PFU/well), cytokine driven inflammatory responses were induced from all cell types. Although phages appeared to inhibit the growth of intestinal epithelial cell lines, they also appear to be non-cytotoxic. Despite co-incubation with different cell types, phages maintained a high killing efficiency, reducing extended-spectrum betalactamase-producing Escherichia colinumbers by 1-4 log(10) compared to untreated controls. When provided with a suitable bacterial host, phages were also able to actively reproduce in the presence of human cells resulting in an approximately 2 log10 increase in phage titer compared to the initial inoculum. Through an increased understanding of the complex pharmacokinetics of phages, it may be possible to address some of the safety concerns surrounding phage preparations prior to creating new therapeutic strategies.
  •  
5.
  • Petursdottir, Dagbjort H., et al. (författare)
  • Early-Life Human Microbiota Associated With Childhood Allergy Promotes the T Helper 17 Axis in Mice
  • 2017
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal microbiota influences immune maturation during childhood, and is implicated in early-life allergy development. However, to directly study intestinal microbes and gut immune responses in infants is difficult. To investigate how different types of early-life gut microbiota affect immune development, we collected fecal samples from children with different allergic heredity (AH) and inoculated germ-free mice. Immune responses and microbiota composition were evaluated in the offspring of these mice. Microbial composition in the small intestine, the cecum and the colon were determined by 16S rRNA sequencing. The intestinal microbiota differed markedly between the groups of mice, but only exposure to microbiota associated with AH and known future allergy in children resulted in a T helper 17 (Th17)-signature, both systemically and in the gut mucosa in the mouse offspring. These Th17 responses could be signs of a particular microbiota and a shift in immune development, ultimately resulting in an increased risk of allergy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy