SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nedergaard Maiken) "

Sökning: WFRF:(Nedergaard Maiken)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Battistella, Roberta, et al. (författare)
  • Not All Lectins Are Equally Suitable for Labeling Rodent Vasculature
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The vascular system is vital for all tissues and the interest in its visualization spans many fields. A number of different plant-derived lectins are used for detection of vasculature; however, studies performing direct comparison of the labeling efficacy of different lectins and techniques are lacking. In this study, we compared the labeling efficacy of three lectins: Griffonia simplicifolia isolectin B4 (IB4); wheat germ agglutinin (WGA), and Lycopersicon esculentum agglutinin (LEA). The LEA lectin was identified as being far superior to the IB4 and WGA lectins in histological labeling of blood vessels in brain sections. A similar signal-to-noise ratio was achieved with high concentrations of the WGA lectin injected during intracardial perfusion. Lectins were also suitable for labeling vasculature in other tissues, including spinal cord, dura mater, heart, skeletal muscle, kidney, and liver tissues. In uninjured tissues, the LEA lectin was as accurate as the Tie2-eGFP reporter mice and GLUT-1 immunohistochemistry for labeling the cerebral vasculature, validating its specificity and sensitivity. However, in pathological situations, e.g., in stroke, the sensitivity of the LEA lectin decreases dramatically, limiting its applicability in such studies. This work can be used for selecting the type of lectin and labeling method for various tissues.
  •  
2.
  • Bohr, Tomas, et al. (författare)
  • The glymphatic system : Current understanding and modeling
  • 2022
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 25:9
  • Forskningsöversikt (refereegranskat)abstract
    • We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
  •  
3.
  • Du, Ting, et al. (författare)
  • Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:2, s. 787-797
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral oedema develops after anoxic brain injury. In two models of asphyxial and asystolic cardiac arrest without resuscitation, we found that oedema develops shortly after anoxia secondary to terminal depolarizations and the abnormal entry of CSF. Oedema severity correlated with the availability of CSF with the age-dependent increase in CSF volume worsening the severity of oedema. Oedema was identified primarily in brain regions bordering CSF compartments in mice and humans. The degree of ex vivo tissue swelling was predicted by an osmotic model suggesting that anoxic brain tissue possesses a high intrinsic osmotic potential. This osmotic process was temperature-dependent, proposing an additional mechanism for the beneficial effect of therapeutic hypothermia. These observations show that CSF is a primary source of oedema fluid in anoxic brain. This novel insight offers a mechanistic basis for the future development of alternative strategies to prevent cerebral oedema formation after cardiac arrest.
  •  
4.
  • Martikainen, Maria-Viola, et al. (författare)
  • TUBE project: Transport-derived ultrafines and the brain effects
  • 2022
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer’s disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.
  •  
5.
  • Mestre, Humberto, et al. (författare)
  • Aquaporin-4-dependent glymphatic solute transport in the rodent brain
  • 2018
  • Ingår i: eLife. - 2050-084X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The glymphatic system is a brain-wide clearance pathway; its impairment contributes to the accumulation of amyloid-β. Influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent failure to find an effect of Aqp4 knock-out (KO) on CSF and interstitial fluid (ISF) tracer transport, five groups re-examined the importance of AQP4 in glymphatic transport. We concur that CSF influx is higher in wild-type mice than in four different Aqp4 KO lines and in one line that lacks perivascular AQP4 (Snta1 KO). Meta-analysis of all studies demonstrated a significant decrease in tracer transport in KO mice and rats compared to controls. Meta-regression indicated that anesthesia, age, and tracer delivery explain the opposing results. We also report that intrastriatal injections suppress glymphatic function. This validates the role of AQP4 and shows that glymphatic studies must avoid the use of invasive procedures.
  •  
6.
  • Munk, Anne Sofie, et al. (författare)
  • PDGF-B Is Required for Development of the Glymphatic System
  • 2019
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; , s. 3-2969
  • Tidskriftsartikel (refereegranskat)abstract
    • The glymphatic system is a highly polarized cerebrospinal fluid (CSF) transport system that facilitates the clearance of neurotoxic molecules through a brain-wide network of perivascular pathways. Herein we have mapped the development of the glymphatic system in mice. Perivascular CSF transport first emerges in hippocampus in newborn mice, and a mature glymphatic system is established in the cortex at 2 weeks of age. Formation of astrocytic endfeet and polarized expression of aquaporin 4 (AQP4) consistently coincided with the appearance of perivascular CSF transport. Deficiency of platelet-derived growth factor B (PDGF-B) function in the PDGF retention motif knockout mouse line Pdgfb ret/ret suppressed the development of the glymphatic system, whose functions remained suppressed in adulthood compared with wild-type mice. These experiments map the natural development of the glymphatic system in mice and define a critical role of PDGF-B in the development of perivascular CSF transport.
  •  
7.
  • Pavan, Chiara, et al. (författare)
  • DNase Treatment Prevents Cerebrospinal Fluid Block in Early Experimental Pneumococcal Meningitis
  • 2021
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 90:4, s. 653-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Streptococcus pneumoniae is the most common cause of bacterial meningitis, a disease that, despite treatment with antibiotics, still is associated with high mortality and morbidity worldwide. Diffuse brain swelling is a leading cause of morbidity in S pneumoniae meningitis. We hypothesized that neutrophil extracellular traps (NETs) disrupt cerebrospinal fluid (CSF) transport by the glymphatic system and contribute to edema formation in S pneumoniae meningitis. Methods: We used DNase I treatment to disrupt NETs and then assessed glymphatic function by cisterna magna injections of CSF tracers in a rat model of S pneumoniae meningitis. Results: Our analysis showed that CSF influx into the brain parenchyma, as well as CSF drainage to the cervical lymph nodes, was significantly reduced in the rat model of S pneumoniae meningitis. Degrading NETs by DNase treatment restored glymphatic transport and eliminated the increase in brain weight in the rats. In contrast, first-line antibiotic treatment had no such effect on restoring fluid dynamics. Interpretation: This study suggests that CSF accumulation is responsible for cerebral edema formation and identifies the glymphatic system and NETs as possible new treatment targets in S pneumoniae meningitis. ANN NEUROL 2021.
  •  
8.
  • Raizen, David M., et al. (författare)
  • Beyond the symptom : the biology of fatigue
  • 2023
  • Ingår i: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 46:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A workshop titled “Beyond the Symptom: The Biology of Fatigue” was held virtually September 27–28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue.The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
  •  
9.
  • Ramos, Marta, et al. (författare)
  • Cisterna Magna Injection in Rats to Study Glymphatic Function
  • 2019
  • Ingår i: Methods in molecular biology (Clifton, N.J.). - New York, NY : Springer New York. - 1940-6029. ; 1938, s. 97-104
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently discovered glymphatic system, which supports brain-wide clearance of metabolic waste, has become the subject of intense research within the past few years. Its nomenclature arose due to its functionally analogous nature to the lymphatic system in combination with glial cells that are part of its anatomical boundaries. The influx of cerebrospinal fluid (CSF) from perivascular spaces into the brain interstitium acts to clear intraparenchymal solutes. CSF is produced by the choroid plexus and flows from the ventricles to the subarachnoid space via the cisterna magna, and as such the injection of tracer molecules into any one of these spaces could be used for studying CSF movement through the glymphatic system. Of these options, the cisterna magna is most favorable as it offers a route of entry that does not involve craniotomy. Herein we describe the cisterna magna (CM) injection procedure carried out in rats, essential for studying glymphatic influx and efflux dynamics.
  •  
10.
  • Reeves, Benjamin C., et al. (författare)
  • Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus
  • 2020
  • Ingår i: Trends in Molecular Medicine. - : Elsevier BV. - 1471-4914. ; 26:3, s. 285-295
  • Forskningsöversikt (refereegranskat)abstract
    • Approximately 10% of dementia patients have idiopathic normal pressure hydrocephalus (iNPH), an expansion of the cerebrospinal fluid (CSF)-filled brain ventricles. iNPH and Alzheimer's disease (AD) both exhibit sleep disturbances, build-up of brain metabolic wastes and amyloid-β (Aβ) plaques, perivascular reactive astrogliosis, and mislocalization of astrocyte aquaporin-4 (AQP4). The glia–lymphatic (glymphatic) system facilitates brain fluid clearance and waste removal during sleep via glia-supported perivascular channels. Human studies have implicated impaired glymphatic function in both AD and iNPH. Continued investigation into the role of glymphatic system biology in AD and iNPH models could lead to new strategies to improve brain health by restoring homeostatic brain metabolism and CSF dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Nedergaard, Maiken (14)
Lundgaard, Iben (8)
Mori, Yuki (4)
Thomas, John H. (3)
Kelley, Douglas H. (3)
Iliff, Jeffrey J. (2)
visa fler...
Syvänen, Stina (2)
Battistella, Roberta (2)
Kritsilis, Marios (2)
Cheng, Anne Xiaoan (2)
Meissner, Anja (2)
Shalgunov, Vladimir (2)
Hjorth, Poul G. (2)
Martens, Erik A. (2)
Tithof, Jeffrey (2)
Sandström, Thomas, 1 ... (1)
Sehlin, Dag, 1976- (1)
Dinnyés, András (1)
Bentzer, Peter (1)
Oyola, Pedro (1)
Wang, Wei (1)
Alper, Seth L. (1)
Mardal, Kent-Andre (1)
Magistretti, Pierre ... (1)
Betsholtz, Christer (1)
Cassee, Flemming R. (1)
Wåhlin, Anders (1)
Oudin, Anna (1)
Lasselin, Julie, 198 ... (1)
Linder, Adam (1)
Xiao, Ming (1)
Matuskova, Hana (1)
Haswell, Douglas (1)
Battisti, Umberto Ma ... (1)
Bèchet, Nicholas Bur ... (1)
Eklund, Anders, 1965 ... (1)
Fisher, Jane (1)
Benveniste, Helene (1)
Knudsen, Gitte Moos (1)
Herth, Matthias Manf ... (1)
Qvarlander, Sara, Te ... (1)
Bohr, Tomas (1)
Holst, Sebastian C. (1)
Hrabětová, Sabina (1)
Kiviniemi, Vesa (1)
Lilius, Tuomas (1)
Nägerl, U. Valentin (1)
Nicholson, Charles (1)
Tannenbaum, Allen (1)
Herth, Matthias M. (1)
visa färre...
Lärosäte
Lunds universitet (9)
Uppsala universitet (3)
Umeå universitet (2)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy