SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neggers Roel) "

Sökning: WFRF:(Neggers Roel)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Geerts, Bart, et al. (författare)
  • The COMBLE Campaign : A Study of Marine Boundary Layer Clouds in Arctic Cold-Air Outbreaks
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:5, s. E1371-E1389
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.  
  •  
2.
  • Pithan, Felix, et al. (författare)
  • Role of air-mass transformations in exchange between the Arctic and mid-latitudes
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:11, s. 805-812
  • Forskningsöversikt (refereegranskat)abstract
    • Pulses of warm and moist air from lower latitudes provide energy to the Arctic and form its main energy source outside of the summer months. These pulses can cause substantial surface warming and trigger ice melt. Air-mass transport in the opposite direction, away from the Arctic, leads to cold-air outbreaks. The outbreaks are often associated with cold extremes over continents, and extreme surface heat fluxes and occasional polar lows over oceans. Air masses advected across the strong Arctic-to-mid-latitude temperature gradient are rapidly transformed into colder and dryer or warmer and moister air masses by clouds, radiative and turbulent processes, particularly in the boundary layer. Phase changes from liquid to ice within boundary-layer clouds are critical in these air-mass transformations. The presence of liquid water determines the radiative effects of these clouds, whereas the presence of ice is crucial for subsequent cloud decay or dissipation, processes that are poorly represented in weather and climate models. We argue that a better understanding of how air masses are transformed on their way into and out of the Arctic is essential for improved prediction of weather and climate in the Arctic and mid-latitudes. Observational and modelling exercises should take an air-mass-following Lagrangian approach to attain these goals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy