SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neher Albert) "

Sökning: WFRF:(Neher Albert)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Hodcroft, EB, et al. (författare)
  • Evolution, geographic spreading, and demographic distribution of Enterovirus D68
  • 2022
  • Ingår i: PLoS pathogens. - : Public Library of Science (PLoS). - 1553-7374. ; 18:5, s. e1010515-
  • Tidskriftsartikel (refereegranskat)abstract
    • Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome (‘whole genome’) sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68’s rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.
  •  
7.
  • Jacobsen, Marc, et al. (författare)
  • Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis
  • 2007
  • Ingår i: Journal of Molecular Medicine. - New York, USA : Springer. - 0946-2716 .- 1432-1440. ; 85:6, s. 613-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Infection with Mycobacterium tuberculosis is controlled by an efficacious immune response in about 90% of infected individuals who do not develop disease. Although essential mediators of protection, e.g., interferon-gamma, have been identified, these factors are insufficient to predict the outcome of M. tuberculosis infection. As a first step to determine additional biomarkers, we compared gene expression profiles of peripheral blood mononuclear cells from tuberculosis patients and M. tuberculosis-infected healthy donors by microarray analysis. Differentially expressed candidate genes were predominantly derived from monocytes and comprised molecules involved in the antimicrobial defense, inflammation, chemotaxis, and intracellular trafficking. We verified differential expression for alpha-defensin 1, alpha-defensin 4, lactoferrin, Fcgamma receptor 1A (cluster of differentiation 64 [CD64]), bactericidal permeability-increasing protein, and formyl peptide receptor 1 by quantitative polymerase chain reaction analysis. Moreover, we identified increased protein expression of CD64 on monocytes from tuberculosis patients. Candidate biomarkers were then assessed for optimal study group discrimination. Using a linear discriminant analysis, a minimal group of genes comprising lactoferrin, CD64, and the Ras-associated GTPase 33A was sufficient for classification of (1) tuberculosis patients, (2) M. tuberculosis-infected healthy donors, and (3) noninfected healthy donors.
  •  
8.
  • Jacobsen, Marc, et al. (författare)
  • Ras-associated small GTPase 33A, a novel T cell factor, is down-regulated in patients with tuberculosis
  • 2005
  • Ingår i: Journal of Infectious Diseases. - Chicago, USA : University of Chicago Press. - 0022-1899 .- 1537-6613. ; 192:7, s. 1211-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ras-associated small GTPases (Rabs) are specific regulators of intracellular vesicle trafficking. Interference with host cell vesicular transport is a hallmark of many intracellular pathogens, including the notable example Mycobacterium tuberculosis. We performed, by quantitative polymerase chain reaction, gene-expression analyses for selected Rab molecules in peripheral-blood mononuclear cells from patients with tuberculosis (TB) and healthy control subjects, to identify candidate genes that are critically involved in the host immune response. Comparison revealed significant differences in the expression of genes for Rab13, Rab24, and Rab33A. Rab33A gene expression was down-regulated in patients with TB and was predominantly expressed in CD8+ T cells. We excluded possible influences of differences in T cell percentages between the 2 study groups, demonstrating that Rab33A gene expression changes on the single-cell level. In vitro, Rab33A RNA expression was induced in T cells on activation and by dendritic cells infected with M. tuberculosis. Our findings identify Rab33A as a T cell regulatory molecule in TB and suggest its involvement in disease processes.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy