SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neiner C.) "

Sökning: WFRF:(Neiner C.)

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wade, G. A., et al. (författare)
  • The MiMeS survey of magnetism in massive stars : introduction and overview
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 2-22
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada-France-Hawaii Telescope, Narval at the Telescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
  •  
2.
  • David-Uraz, A., et al. (författare)
  • Magnetic OB[A] Stars with TESS : probing their Evolutionary and Rotational properties (MOBSTER) - I. First-light observations of known magnetic B and A stars
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 487:1, s. 304-317
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we introduce the MOBSTER collaboration and lay out its scientific goals. We present first results based on the analysis of 19 previously known magnetic O, B, and A stars observed in 2-min cadence in sectors 1 and 2 of the Transiting Exoplanet Survey Satellite (TESS) mission. We derive precise rotational periods from the newly obtained light curves and compare them to previously published values. We also discuss the overall photometric phenomenology of the known magnetic massive and intermediate-mass stars and propose an observational strategy to augment this population by taking advantage of the high-quality observations produced by TESS.
  •  
3.
  • Shultz, M. E., et al. (författare)
  • Ultraviolet spectropolarimetry with Polstar : using Polstar to test magnetospheric mass-loss quenching
  • 2022
  • Ingår i: Astrophysics and Space Science. - : Springer Nature. - 0004-640X .- 1572-946X. ; 367:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Polstar is a proposed NASA MIDEX space telescope that will provide high-resolution, simultaneous full-Stokes spectropolarimetry in the far ultraviolet, together with low-resolution linear polarimetry in the near ultraviolet. This observatory offers unprecedented capabilities to obtain unique information on the magnetic and plasma properties of the magnetospheres of hot stars. We describe an observing program making use of the known population of magnetic hot stars to test the fundamental hypothesis that magnetospheres should act to rapidly drain angular momentum, thereby spinning the star down, whilst simultaneously reducing the net mass-loss rate. Both effects are expected to lead to dramatic differences in the evolution of magnetic vs. non-magnetic stars.
  •  
4.
  • Tsvetkova, S., et al. (författare)
  • The large-scale magnetic field of the M dwarf double-line spectroscopic binary FK Aqr*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. This work is part of the BinaMIcS project, the aim of which is to understand the interaction between binarity and magnetism in close binary systems. All the studied spectroscopic binaries targeted by the BinaMIcS project encompass hot massive and intermediate-mass stars on the main sequence, as well as cool stars over a wide range of evolutionary stages. Aims. The present paper focuses on the binary system FK Aqr, which is composed of two early M dwarfs. Both stars are already known to be magnetically active based on their light curves and detected flare activity. In addition, the two components have large convective envelopes with masses just above the fully convective limit, making the system an ideal target for studying effect of binarity on stellar dynamos. Methods. We use spectropolarimetric observations obtained with ESPaDOnS at CFHT in September 2014. Mean Stokes I and V line profiles are extracted using the least-squares deconvolution (LSD) method. The radial velocities of the two components are measured from the LSD Stokes I profiles and are combined with interferometric measurements in order to constrain the orbital parameters of the system. The longitudinal magnetic fields B-l and chromospheric activity indicators are measured from the LSD mean line profiles. The rotational modulation of the Stokes V profiles is used to reconstruct the surface magnetic field structures of both stars via the Zeeman Doppler imaging (ZDI) inversion technique. Results. Maps of the surface magnetic field structures of both components of FK Aqr are presented for the first time. Our study shows that both components host similar large-scale magnetic fields of moderate intensity (B-mean similar or equal to 0.25 kG); both are predominantly poloidal and feature a strong axisymmetric dipolar component. Conclusions. Both components of FK Aqr feature a rather strong large-scale magnetic field (compared to single early M dwarfs with similar masses) with a mainly dipolar axisymmetric structure. This type of magnetic field is not typical for single early M dwarfs, and is rather reminiscent of fully convective dwarfs with later spectral types. The primary FK Aqr A is currently the most massive recognised main sequence M dwarf known to host this type of strong dipolar field.
  •  
5.
  • Alecian, E., et al. (författare)
  • First HARPSpol discoveries of magnetic fields in massive stars
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 536, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. We report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements strongly vary for HD 130807 from similar to-100 G to similar to 700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from similar to-40 to -80 G, and from similar to-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of MiMeS objectives: the understanding of the origin of magnetic fields in massive stars and their impact on stellar structure and evolution.
  •  
6.
  • Alecian, E., et al. (författare)
  • The dramatic change of the fossil magnetic field of HD 190073 : Evidence of the birth of the convective core in a Herbig star?
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 549, s. L8-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the context of the ESPaDOnS and Narval spectropolarimetric surveys of Herbig Ae/Be stars, we discovered and then monitored the magnetic field of HD 190073 over more than four years, from 2004 to 2009. Our observations all displayed similar Zeeman signatures in the Stokes V spectra, indicating that HD 190073 hosted an aligned dipole, stable over many years, consistent with a fossil origin. We obtained new observations of the star in 2011 and 2012 and detected clear variations of the Zeeman signature on timescales of days to weeks, indicating that the configuration of its field has changed between 2009 and 2011. Such a sudden change of external structure of a fossil field has never previously been observed in any intermediate or high-mass star. HD 190073 is an almost entirely radiative pre-main sequence star, probably hosting a growing convective core. We propose that this dramatic change is the result of the interaction between the fossil field and the ignition of a dynamo field generated in the newly-born convective core.
  •  
7.
  • Grunhut, H, et al. (författare)
  • Discovery of a magnetic field in the O9 sub-giant star HD 57682 by the MiMeS Collaboration
  • 2009
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 400:1, s. L94-L98
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of a strong, organized magnetic field in the O9IV star HD 57682, using spectropolarimetric observations obtained with ESPaDOnS at the 3.6-m Canada-France-Hawaii Telescope within the context of the Magnetism in Massive Stars (MiMeS) Large Programme. From the fitting of our spectra using non-local thermodynamic equilibrium model atmospheres, we determined that HD 57682 is a 17(-9)(+19)M(circle dot) star with a radius of 7.0(-1.8)(+2.4)R(circle dot) and a relatively low mass-loss rate of 1.4(-0.95)(+3.1) x 10(-9) M-circle dot yr(-1). The photospheric absorption lines are narrow, and we use the Fourier transform technique to infer v sin i = 15 +/- 3 km s(-1). This v sin i implies a maximum rotational period of 31.5 d, a value qualitatively consistent with the observed variability of the optical absorption and emission lines, as well as the Stokes V profiles and longitudinal field. Using a Bayesian analysis of the velocity-resolved Stokes V profiles to infer the magnetic field characteristics, we tentatively derive a dipole field strength of 1680(-356)(+134)G. The derived field strength and wind characteristics imply a wind that is strongly confined by the magnetic field.
  •  
8.
  • Grunhut, J. H., et al. (författare)
  • The magnetic field and magnetosphere of Plaskett's star : a fundamental shift in our understanding of the system
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:2, s. 1944-1966
  • Tidskriftsartikel (refereegranskat)abstract
    • Plaskett's 'star' appears to be one of a small number of short-period binary systems known to contain a hot, massive, magnetic star. We combine an extensive spectropolarimetric (Stokes V) data set with archival photometry and spectropolarimetry to establish the essential characteristics of the magnetic field and magnetosphere of the rapidly rotating, broad-line component of the system. We apply least-squares deconvolution (LSD) to infer the longitudinal magnetic field from each Stokes V spectrum. Using the time series of longitudinal field measurements, in combination with CoRoT photometry and equivalent width measurements of magnetospheric spectral lines, we infer the rotation period of the magnetic star to be equal to 1.21551(-0.00034)(+0.00028) d. Modelling the Stokes V LSD profiles with Zeeman-Doppler Imaging, we produce the first reliable magnetic map of an O-type star. We find a magnetic field that is predominantly dipolar, with an obliquity near 90 degrees and a polar strength of about 850 G. We update the calculations of the theoretical magnetospheric parameters, and in agreement with their predictions we identify clear variability signatures of the H alpha, H beta, and He II lambda 4686 lines confirming the presence of a dense centrifugal magnetosphere surrounding the star. Finally, we report a lack of detection of radial velocity (RV) variations of the observed Stokes V profiles, suggesting that historical reports of the large RV variations of the broad-line star's spectral lines may be spurious. This discovery may motivate a fundamental revision of the historical model of the Plaskett's star as a near-equal mass O + O binary system.
  •  
9.
  • Grunhut, J. H., et al. (författare)
  • The MiMeS survey of Magnetism in Massive Stars : magnetic analysis of the O-type stars
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 465:2, s. 2432-2470
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the Magnetism in Massive Stars (MiMeS) Survey. Mean least-squares deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field B-l. The investigation of the Stokes I profiles led to the discovery of two new multiline spectroscopic systems (HD 46106, HD 204827) and confirmed the presence of a suspected companion in HD 37041. We present a modified strategy of the leastsquares deconvolution technique aimed at optimizing the detection of magnetic signatures while minimizing the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in six targets previously reported as magnetic by the MiMeS collaboration (HD 108, HD 47129A2, HD 57682, HD 148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in three new magnetic candidates (HD 36486, HD 162978, and HD 199579). Overall, we find a magnetic incidence rate of 7 +/- 3 per cent, for 108 individual O stars (including all O-type components part of multiline systems), with a median uncertainty of the B-l measurements of about 50 G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars' physical properties (e.g. T-eff, mass, and age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.
  •  
10.
  • Henrichs, Huib F., et al. (författare)
  • The magnetic field of the B3V star 16 Pegasi
  • 2009
  • Ingår i: Proceedings of the International Astronomical Union. ; 259, s. 393-394, s. 393-394
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The slowly pulsating B3V star 16 Pegasi was discovered by Hubrig et al. (2006) to be magnetic, based on low-resolution spectropolarimetric observations with FORS1 at the VLT. We have confirmed the presence of a magnetic field with new measurements with the spectropolarimeters Narval at TBL, France and Espadons at CFHT, Hawaii during 2007. The most likely period is about 1.44 d for the modulation of the field, but this could not be firmly established with the available data set. No variability has been found in the UV stellar wind lines. Although the star was reported once to show Hα in emission, there exists at present no confirmation that the star is a Be star.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy