SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Neutze Richard) "

Sökning: WFRF:(Neutze Richard)

  • Resultat 1-10 av 94
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
2.
  • Brändén, Gisela, 1975, et al. (författare)
  • Coherent diffractive imaging of microtubules using an X-ray laser.
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.
  •  
3.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
4.
  • Johansson, Linda C, 1983, et al. (författare)
  • Lipidic phase membrane protein serial femtosecond crystallography.
  • 2012
  • Ingår i: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 9:3, s. 263-265
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
  •  
5.
  • Johansson, Linda C, 1983, et al. (författare)
  • Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography.
  • 2013
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8Å resolution and determine its serial femtosecond crystallography structure to 3.5Å resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
  •  
6.
  • Popp, David, et al. (författare)
  • Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser
  • 2017
  • Ingår i: CYTOSKELETON. - : WILEY. - 1949-3584 .- 1949-3592. ; 74:12, s. 472-481
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked -strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual -synuclein amyloids.
  •  
7.
  • Redecke, Lars, et al. (författare)
  • Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser.
  • 2013
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 339:6116, s. 227-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
  •  
8.
  • Wadsten, Pia, 1969, et al. (författare)
  • Lipidic sponge phase crystallization of membrane proteins.
  • 2006
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 364:1, s. 44-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Bicontinuous lipidic cubic phases can be used as a host for growing crystals of membrane proteins. Since the cubic phase is stiff, handling is difficult and time-consuming. Moreover, the conventional cubic phase may interfere with the hydrophilic domains of membrane proteins due to the limited size of the aqueous pores. Here, we introduce a new crystallization method that makes use of a liquid analogue of the cubic phase, the sponge phase. This phase facilitates a considerable increase in the allowed size of aqueous domains of membrane proteins, and is easily generalised to a conventional vapour diffusion crystallisation experiment, including the use of nanoliter drop crystallization robots. The appearance of the sponge phase was confirmed by visual inspection, small-angle X-ray scattering and NMR spectroscopy. Crystals of the reaction centre from Rhodobacter sphaeroides were obtained by a conventional hanging-drop experiment, were harvested directly without the addition of lipase or cryoprotectant, and the structure was refined to 2.2 Angstroms resolution. In contrast to our earlier lipidic cubic phase reaction centre structure, the mobile ubiquinone could be built and refined. The practical advantages of the sponge phase make it a potent tool for crystallization of membrane proteins.
  •  
9.
  • Wöhri, Annemarie, 1976, et al. (författare)
  • A Lipidic-Sponge Phase Screen for Membrane Protein Crystallization
  • 2008
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 16:7, s. 1003-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • A major current deficit in structural biology is the lack of high-resolution structures of eukaryotic membrane proteins, many of which are key drug targets for the treatment of disease. Numerous eukaryotic membrane proteins require specific lipids for their stability and activity, and efforts to crystallize and solve the structures of membrane proteins that do not address the issue of lipids frequently end in failure rather than success. To help address this problem, we have developed a sparse matrix crystallization screen consisting of 48 lipidic-sponge phase conditions. Sponge phases form liquid lipid bilayer environments which are suitable for conventional hanging- and sitting-drop crystallization experiments. Using the sponge phase screen, we obtained crystals of several different membrane proteins from bacterial and eukaryotic sources. We also demonstrate how the screen may be manipulated by incorporating specific lipids such as cholesterol; this modification led to crystals being recovered from a bacterial photosynthetic core complex.
  •  
10.
  • Andersson, Magnus, et al. (författare)
  • A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins
  • 2008
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 16:1, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved X-ray scattering has emerged as a powerful technique for studying the rapid structural dynamics of small molecules in solution. Membrane-protein-catalyzed transport processes frequently couple large-scale conformational changes of the transporter with local structural changes perturbing the uptake and release of the transported substrate. Using light-driven halide ion transport catalyzed by halorhodopsin as a model system, we combine molecular dynamics simulations with X-ray scattering calculations to demonstrate how small-molecule time-resolved X-ray scattering can be extended to the study of membrane transport processes. In particular, by introducing strongly scattering atoms to label specific positions within the protein and substrate, the technique of time-resolved wide-angle X-ray scattering can reveal both local and global conformational changes. This approach simultaneously enables the direct visualization of global rearrangements and substrate movement, crucial concepts that underpin the alternating access paradigm for membrane transport proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 94
Typ av publikation
tidskriftsartikel (83)
forskningsöversikt (4)
doktorsavhandling (3)
konferensbidrag (2)
annan publikation (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (86)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Neutze, Richard, 196 ... (84)
Katona, Gergely, 197 ... (22)
Davidsson, Jan (20)
Johansson, Linda C, ... (17)
Malmerberg, Erik, 19 ... (15)
Brändén, Gisela, 197 ... (13)
visa fler...
Arnlund, David (13)
Hedfalk, Kristina, 1 ... (13)
Båth, Petra, 1988 (12)
Seibert, M Marvin (10)
Wickstrand, Cecilia (10)
Westenhoff, Sebastia ... (9)
Barty, Anton (9)
DePonte, Daniel P. (9)
Wöhri, Annemarie, 19 ... (8)
Dods, Robert, 1989 (8)
Bosman, Robert, 1991 (8)
Liang, Mengning (8)
Williams, Garth J. (7)
Andersson, Rebecka, ... (7)
Fischer, Gerhard, 19 ... (7)
Hunter, Mark S. (7)
White, Thomas A. (7)
Neutze, Richard (7)
Berntsen, Peter, 197 ... (7)
Nyblom, Anna Maria, ... (7)
Harimoorthy, Rajiv (7)
Nango, E. (7)
Törnroth-Horsefield, ... (6)
Wulff, Michael (6)
Caleman, Carl (6)
Hajdu, Janos (6)
Boutet, Sébastien (6)
Vincent, Jonathan (6)
Safari, Cecilia, 198 ... (6)
Dahl, Peter, 1965 (6)
Shoeman, Robert L (6)
Doak, R Bruce (6)
Timneanu, Nicusor (6)
Chapman, Henry N. (6)
Iwata, S (6)
Stellato, Francesco (6)
James, D. (6)
Weierstall, U. (6)
Horsefield, Rob, 197 ... (6)
Wahlgren, Weixiao Yu ... (6)
Hammarin, Greger, 19 ... (6)
Sharma, Amit (6)
Standfuss, J. (6)
Nogly, P. (6)
visa färre...
Lärosäte
Göteborgs universitet (81)
Chalmers tekniska högskola (36)
Uppsala universitet (27)
Lunds universitet (10)
Umeå universitet (4)
Kungliga Tekniska Högskolan (4)
visa fler...
Stockholms universitet (3)
Linnéuniversitetet (2)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (94)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (88)
Teknik (7)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy