SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nevalainen Nina) "

Sökning: WFRF:(Nevalainen Nina)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chermenina, Maria, et al. (författare)
  • GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum
  • 2014
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 270, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Glial cell-derived neurotrophic factor (GDNF) exerts neuroprotective and neurorestorative effects on neurons and GDNF plays a significant role in maintenance of the dopamine neurons utilizing grafting to create a nigrostriatal microcircuit of Gdnf knockout (Gdnf(-/-)) tissue. To further evaluate the role of GDNF on organization of the nigrostriatal system, single or double grafts of ventral mesencephalon (VM) and lateral ganglionic eminence (LGE) with mismatches in Gdnf genotypes were performed. The survival of single grafts was monitored utilizing magnetic resonance imaging (MRI) and cell survival and graft organization were evaluated with immunohistochemistry. The results revealed that the size of VM single grafts did not change over time independent of genotype, while the size of the LGE transplants was significantly reduced already at 2weeks postgrafting when lacking GDNF. Lack of GDNF did not significantly affect the survival of tyrosine hydroxylase (TH)-positive neurons in single VM grafts. However, the survival of TH-positive neurons was significantly reduced in VM derived from Gdnf(+/+) when co-grafted with LGE from the Gdnf(-/-) tissue. In contrast, lack of GDNF in the VM portion of co-grafts had no effect on the survival of TH-positive neurons when co-grafted with LGE from Gdnf(+/+) mice. The TH-positive innervation of co-grafts was sparse when the striatal co-grafts were derived from the Gdnf(-/-) tissue while dense and patchy when innervating LGE producing GDNF. The TH-positive innervation overlapped with the organization of dopamine and cyclic AMP-regulated phosphoprotein-relative molecular mass 32,000 (DARPP-32)-positive neurons, that was disorganized in LGE lacking GDNF production. In conclusion, GDNF is important for a proper striatal organization and for survival of TH-positive neurons in the presence of the striatal tissue.
  •  
3.
  • Nevalainen, Nina, et al. (författare)
  • COBRA : A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.
  • 2015
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993 .- 1872-6240. ; 1612, s. 83-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study.
  •  
4.
  • Nevalainen, Nina, et al. (författare)
  • Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia
  • 2011
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 118:1, s. 12-23
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA is the most commonly used treatment for symptomatic control in patients with Parkinson's disease. Unfortunately, most patients develop severe side-effects, such as dyskinesia, upon chronic l-DOPA treatment. The patophysiology of dyskinesia is unclear; however, involvement of serotonergic nerve fibers in converting l-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of l-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned l-DOPA naïve, and dopamine-denervated chronically l-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local l-DOPA administration into normal and intact hemisphere of dopamine-lesioned l-DOPA naïve animals significantly increased the potassium-evoked dopamine release. l-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted l-DOPA naïve striatum, although these dopamine levels were several-folds lower than in the normal striatum, whereas no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local l-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared with those measured in l-DOPA naïve dopamine-denervated striatum. To conclude, l-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, l-DOPA loading does not increase the dopamine release in dyskinetic animals as found in l-DOPA naïve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior.
  •  
5.
  • Nevalainen, Nina, 1984- (författare)
  • Dysfunction in the nigrostriatal system : effects of L-DOPA and GDNF
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Parkinson’s disease is a common neurodegenerative disorder caused by nigrostriatal dopamine loss, with motor deficiencies as the primary outcome. To increase the striatal dopamine content, patients are treated with 3,4-dihydroxyphenyl-l-alanine (l-DOPA). Beneficial relief of the motor symptoms is achieved initially, although the efficacy is lost with time and severe side effects, referred to as l-DOPA-induced dyskinesia, manifest in the majority of patients. Biological mechanisms responsible for the dopaminergic degeneration and the upcoming of dyskinesia are still unclear, and thus knowledge regarding critical factors for maintenance of the nigrostriatal system as well as neurochemical changes upon chronic l-DOPA is urgent. The present work aims at studying the importance of glial cell line-derived neurotrophic factor (GDNF) for nigrostriatal preservation, and the involvement of the dopaminergic, serotonergic, and glutamatergic systems in l-DOPA-induced dyskinesia. Effects from different levels of GDNF expression were evaluated on fetal mouse nigrostriatal tissue in a grafting study. In GDNF gene-deleted grafts, degeneration of the entire nigrostriatal system was evident at 6 months. In grafts with partial GDNF expression, significant loss of dopamine neurons was observed at later time points, although deviant findings in the dopamine integrity such as reduced innervation capacity and presence of intracellular inclusions-like structures were already present at earlier stages. The results emphasize GDNF as a crucial factor for long-term maintenance of the nigrostriatal system. Furthermore, striatal neurochemical alterations upon chronic l-DOPA treatment were studied in hemiparkinsonian rats using in vivo voltametry. The findings demonstrated impaired dopamine as well as glutamate releases in dyskinetic subjects, with no effects from acute l-DOPA administration. Conversely, in l-DOPA naïve dopamine-lesioned animals, dopamine release was increased and glutamate release attenuated upon a l-DOPA challenge. Moreover, l-DOPA-derived dopamine release was demonstrated to originate from serotonergic nerve fibers in the dopamine-lesioned striatum, an event that contributes significantly to dopamine levels also in intact striatum, and thus, is not a consequence from dopamine depletion. Assessment of serotonergic nerve fibers in l-DOPA treated animals and in a grafting study concluded that nerve fiber density was not affected by chronic l-DOPA treatment, nevertheless, dysfunction of this system can be suspected in dyskinetic animals since dopamine release was impaired and regulation of glutamate release by serotonergic 5-HT1A receptor activation was achieved in normal but not in dyskinetic animals. Furthermore, the selective serotonin reuptake inhibitor, fluoxetine, attenuated l-DOPA-induced dyskientic behavior, an effect that was demonstrated to be mediated via 5-HT1A receptors. In conclusion, dysmodulation of multiple transmitter systems is evident in LID. 
  •  
6.
  • Nevalainen, Nina, et al. (författare)
  • Glial cell line-derived neurotrophic factor is crucial for long-term maintenance of the nigrostriatal system
  • 2010
  • Ingår i: Neuroscience. - : Elsevier. - 0306-4522 .- 1873-7544. ; 171:4, s. 1357-1366
  • Tidskriftsartikel (refereegranskat)abstract
    • Glial cell line-derived neurotrophic factor (GDNF) is a potent factor for the ventral mesencephalic dopamine neurons. However, studies on the Gdnf gene deleted (Gdnf(-/-)) mouse have been limited to fetal tissue since these mice die prematurely. To evaluate long-term effects of Gdnf gene deletion, this study involves co-grafts of ventral mesencephalon (VM) and lateral ganglionic eminence (LGE) derived from different Gdnf genotypes. The VM/LGE co-grafts were evaluated at 3, 6, and 12 months for tyrosine hydroxylase (TH) -positive cell survival and nerve fiber formation in the LGE co-transplant, visualized by dopamine- and cyclic AMP-regulated phosphoprotein relative molecular mass 32,000 (DARPP-32) -immunoreactivity. Cell counts revealed no difference in TH-positive neurons between Gdnf genotypes at 3 months postgrafting. At 6 months, a significant reduction in cell number was observed in the Gdnf(-/-) grafts. In fact, in the majority of the Gdnf(-/-) VM/LGE transplant had degenerated. At 12 months, a reduction in cell number was seen in both Gdnf(-/-) and Gdnf(+/-) compared to wild type transplants. In the Gdnf(-/-) grafts, TH-negative inclusion-like structures were present in the cytoplasm of the TH-positive neurons at 3 months. These structures were also found in the Gdnf(+/-) transplants at 12 months, but not in Gdnf(+/+) controls at any time point. In Gdnf(+/+) grafts, TH-positive nerve fiber innervation of the striatal co-grafts was dense and patchy and overlapped with clusters of DARPP-32-positive neurons. This overlap did mismatch in the Gdnf(+/-) grafts, while the TH-positive innervation was sparse in the Gdnf(-/-) transplants and the DARPP-32-positive neurons were widespread distributed. In conclusion, GDNF is essential for long-term maintenance of both the VM TH-positive neurons and for the striatal tissue, and appears crucial for generation of a proper organization of the striatum.
  •  
7.
  • Nevalainen, Nina, et al. (författare)
  • Serotonergic nerve fibers in l-DOPA-derived dopamine release and dyskinesia
  • 2014
  • Ingår i: Neuroscience. - : Elsevier. - 0306-4522 .- 1873-7544. ; 260, s. 73-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The 5-HT (5-hydroxytryptamine) system has been assigned a key role in the development of 3,4-dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia, mainly due to 5-HT neuronal ability to decarboxylate l-DOPA into dopamine. Nevertheless, knowledge of l-DOPA-induced events that could lead to development of dyskinesias are limited and therefore the present work has evaluated (i) the role of the 5-HT system in l-DOPA-derived dopamine synthesis when dopamine neurons are present, (ii) l-DOPA-induced effects on striatal dopamine release and clearance, and on 5-HT nerve fiber density, and (iii) the behavioral outcome of altered 5-HT transmission in dyskinetic rats. Chronoamperometric recordings demonstrated attenuated striatal l-DOPA-derived dopamine release (∼30%) upon removal of 5-HT nerve fibers in intact animals. Interestingly, four weeks of daily l-DOPA treatment yielded similar-sized dopamine peak amplitudes in intact animals as found after a 5-HT-lesion. Moreover, chronic l-DOPA exposure attenuated striatal 5-HT nerve fiber density in the absence of dopamine nerve terminals. Furthermore, fluoxetine-induced altered 5-HT transmission blocked dyskinetic behavior via action on 5-HT1A receptors. Taken together, the results indicate a central role for the 5-HT system in l-DOPA-derived dopamine synthesis and in dyskinesia, and therefore potential l-DOPA-induced deterioration of 5-HT function might reduce l-DOPA efficacy as well as promote the upcoming of motor side effects.
  •  
8.
  • Nevalainen, Nina, et al. (författare)
  • Striatal Glutamate Release in L-DOPA-Induced Dyskinetic Animals
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA-induced dyskinesia is a common side effect developed after chronic treatment with 3,4-dihydroxyphenyl-L-alanine (L-DOPA) in Parkinson's disease. The biological mechanisms behind this side effect are not fully comprehended although involvement of dopaminergic, serotonergic, and glutamatergic systems has been suggested. The present study utilizes in vivo amperometry to investigate the impact from unilateral 6-hydroxydopamine lesions and L-DOPA (4 mg/kg, including benserazide 15 mg/kg) -induced dyskinetic behavior on striatal basal extracellular glutamate concentration and potassium-evoked glutamate release in urethane-anesthetized rats. Recordings were performed before and after local L-DOPA application in the striatum. In addition, effects from the 5-HT1A receptor agonist (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OHDPAT; 1 mg/kg) was assessed on glutamate release and on dyskinetic behavior. The results revealed a bilateral similar to 30% reduction of basal extracellular glutamate concentration and attenuated potassium-evoked glutamate release after a unilateral dopamine-depletion in L-DOPA naive animals. In dyskinetic subjects, basal glutamate concentration was comparable to normal controls, although potassium-evoked glutamate release was reduced to similar levels as in drug naive dopamine-lesioned animals. Furthermore, acute striatal L-DOPA administration attenuated glutamate release in all groups, except in the dopamine-lesioned striatum of dyskinetic animals. Co-administration of 8-OHDPAT and L-DOPA decreased dyskinesia in dopamine-lesioned animals, but did not affect potassium-evoked glutamate release, which was seen in normal animals. These findings indicate altered glutamate transmission upon dopamine-depletion and dyskinesia.
  •  
9.
  •  
10.
  • Ohlson, Nina, 1976- (författare)
  • Early effects of castration therapy in non-malignant and malignant prostate tissue
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Early Effects of Castration Therapy in Non-malignant and Malignant Prostate Tissue BACKGROUND. Androgen ablation, the standard treatment for advanced prostate cancer, results in increased apoptosis, decreased cell proliferation and subsequent involution of the prostate gland. The mechanisms behind these responses are largely unknown, but effects in the prostatic epithelium are believed to be mediated by primary changes in the stroma. The purpose of this thesis was to investigate short-term cellular effects of castration-induced prostate tissue involution in mice and humans. METHODS. Prostate tissue factors affected by castration were investigated using cDNA-arrays, micro-dissection, RT-PCR, immunohistochemistry and Western blot analysis. The effects of local insulin-like growth factor-1 (IGF-1) administration were investigated in intact and castrated mice. Non-malignant and malignant epithelial and stromal cells were micro-dissected from human prostate biopsies taken before and within two weeks after castration treatment from patients with advanced prostate cancer. These tissue compartments were analyzed by RT-PCR and/or immunohistochemistry for IGF-1, IGF-1 receptor, androgen receptor (AR) and prostate specific antigen (PSA) expression. Treatment-induced changes in these factors were related to apoptosis and proliferation as well as to clinical data and cancer specific survival. RESULTS. Similar to our observations in mouse ventral prostate (VP), non-malignant and malignant human prostate tissues responded with increased epithelial cell apoptosis and decreased proliferation after androgen withdrawal. Also, the PSA mRNA levels were reduced within the first days after therapy both in non-malignant and malignant human prostate epithelial cells. However, neither of these changes was related to subsequent nadir serum PSA or to survival. Locally injected IGF-1 increased epithelial cell proliferation and vascular volume in intact but not in castrated mice. IGF-1 was found to be mostly, but not exclusively, expressed in the stroma, and it decreased rapidly after castration in both humans and mice. This decrease was, however, largely absent in prostate tumor stroma, and tumor stroma cells showed lower pre-treatment levels of AR than stroma surrounding normal epithelial glands. Furthermore, decreased levels of IGF-1 mRNA in the non-malignant and tumor stroma cells, and in tumor epithelial cells in response to castration, were associated with high levels of apoptosis in epithelial cells after therapy. CONCLUSIONS. In the prostate, IGF-1 may be an important mediator of stroma-epithelial cell interaction that is involved in castration-induced epithelial and vascular involution. Moreover, reduced AR in the tumor stroma may play an important role in prostate cancer progression towards androgen-independency, resulting in inadequate IGF-1 reduction and apoptosis induction in response to castration. Most primary tumors initially respond to castration with markedly decreased PSA synthesis and cell proliferation, and moderately increased apoptosis. Death due to metastatic disease is, however, still common, despite primary tumor regression. This may suggest that tumor cells in metastases respond differently to treatment than primary tumor cells, probably influenced by a different and possibly androgen-independent stroma. Further studies should test the hypothesis that the effect of castration therapy can be enhanced by simultaneous blocking of IGF-1 signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy