SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niaudet Colin) "

Sökning: WFRF:(Niaudet Colin)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Armulik, Annika, et al. (författare)
  • Pericytes regulate the blood-brain barrier
  • 2010
  • Ingår i: NATURE. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 468:7323
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Egana, I, et al. (författare)
  • Female mice lacking Pald1 exhibit endothelial cell apoptosis and emphysema
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 15453-
  • Tidskriftsartikel (refereegranskat)abstract
    • Paladin (Pald1, mKIAA1274 or x99384) was identified in screens for vascular-specific genes and is a putative phosphatase. Paladin has also been proposed to be involved in various biological processes such as insulin signaling, innate immunity and neural crest migration. To determine the role of paladin we have now characterized the Pald1 knock-out mouse in a broad array of behavioral, physiological and biochemical tests. Here, we show that female, but not male, Pald1 heterozygous and homozygous knock-out mice display an emphysema-like histology with increased alveolar air spaces and impaired lung function with an obstructive phenotype. In contrast to many other tissues where Pald1 is restricted to the vascular compartment, Pald1 is expressed in both the epithelial and mesenchymal compartments of the postnatal lung. However, in Pald1 knock-out females, there is a specific increase in apoptosis and proliferation of endothelial cells, but not in non-endothelial cells. This results in a transient reduction of endothelial cells in the maturing lung. Our data suggests that Pald1 is required during lung vascular development and for normal function of the developing and adult lung in a sex-specific manner. To our knowledge, this is the first report of a sex-specific effect on endothelial cell apoptosis.
  •  
4.
  •  
5.
  •  
6.
  • Laviña, Bàrbara, et al. (författare)
  • Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations
  • 2018
  • Ingår i: Development. - : The Company of Biologists. - 0950-1991 .- 1477-9129. ; 145:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.
  •  
7.
  • Musa, Gentian, et al. (författare)
  • Heart development, angiogenesis, and blood-brain barrier function is modulated by adhesion GPCRs
  • 2016
  • Ingår i: Adhesion G Protein-coupled Receptors. - Cham : Springer Publishing Company. - 9783319415239 - 9783319415215 ; , s. 351-368
  • Bokkapitel (refereegranskat)abstract
    • The cardiovascular system in adult organisms forms a network of interconnected endothelial cells, supported by mural cells and displaying a high degree of hierarchy: arteries emerging from the heart ramify into arterioles and then capillaries, which return to the venous systems through venules and veins. The cardiovascular system allows blood circulation, which in turn is essential for hemostasis through gas diffusion, nutrient distribution, and cell trafficking. In this chapter, we have summarized the current knowledge on how adhesion GPCRs (aGPCRs) impact heart development, followed by their role in modulating vascular angiogenesis.
  •  
8.
  • Niaudet, Colin, et al. (författare)
  • Adgrf5 contributes to patterning of the endothelial deep layer in retina
  • 2019
  • Ingår i: Angiogenesis. - : SPRINGER. - 0969-6970 .- 1573-7209. ; 22:4, s. 491-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Neovascularization of the inner retinal space is a major cause of vision loss. In retinal angiomatous proliferation (RAP) syndrome, newly formed vessels originate from the retinal plexus and invade the inner retinal space. However, the molecular pathways preventing subretinal vascularization remain largely unknown. In most murine models of RAP, pathological neo-vascularization occurs concomitantly with the development of the retinal vasculature. Here, we demonstrate that disturbing the sequence of morphogenetic events that shape the three-layered retinal vascular network leads to subretinal vascularization. Sprouts emerging from the perivenous region after the first postnatal week extended toward the retinal space where they merged into the deep layer. The small GTPase Rac1 was required for the formation of these vascular extensions and the vascular inner plexus is formed coaxially to the overarching veins. The adhesion receptor Adgrf5 was highly expressed in the endothelium of the central nervous system, where it regulates blood-brain barrier formation. The vascular superficial plexus of Adgrf5 mutant mouse retinae exhibited an increased vascular density in the perivenous areas with increased projections toward the inner plexus where they subsequently created hyper-dense endothelial cells (EC) clusters. Disturbing the perivenous pool of EC thus significantly altered the inner plexus formation. These abnormalities culminated in transient vascular protrusions in the inner retinal space. Taken together, these results reveal a previously unobserved vascular morphogenetic defect in Adgrf5 knockout mice, implicating a role for ADGRF5 in the initiation of subretinal vascularization. Our findings also illustrate how vein-derived EC shape the inner retinal layer formation and could control the appearance of angiomatous malformations.
  •  
9.
  • Niaudet, Colin, et al. (författare)
  • Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysemalike pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature.
  •  
10.
  • Niaudet, Colin, et al. (författare)
  • Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis
  • 2017
  • Ingår i: Cellular Signalling. - : Elsevier BV. - 0898-6568 .- 1873-3913. ; 33, s. 10-21
  • Tidskriftsartikel (refereegranskat)abstract
    • The p38 MAPK signaling pathway is essential in the cellular response to stress stimuli, in particular in the endothelial cells that are major target of external stress. The importance of the bioactive sphingolipid ceramide generated by acid sphingomyelinase is also firmly established in stress-induced endothelial apoptotic cell death. Despite a suggested link between the p38 MAPK and ceramide pathways, the exact molecular events of this connection remain elusive. In the present study, by using two different activators of p38 MAPK, namely anisomycin and ionizing radiation, we depicted how ceramide generated by acid sphingomyelinase was involved in p38 MAPK-dependent apoptosis of endothelial cells. We first proved that both anisomycin and ionizing radiation conducted to apoptosis through activation of p38 MAPK in human microvascular endothelial cells HMEC-1. We then found that both treatments induced activation of acid sphingomyelinase and the generation of ceramide. This step was required for p38 MAPK activation and apoptosis. We finally showed that irradiation, as well as treatment with exogenous C-16-ceramide or bacterial sphingomyelinase, induced in endothelial cells a deep reorganization of the plasma membrane with formation of large lipid platforms at the cell surface, leading to p38 MAPK activation ' and apoptosis in endothelial cells. Altogether, our results proved that the plasma membrane reorganization leading to ceramide production is essential for stress-induced activation of p38 MAPK and apoptosis in endothelial cells and established the link between the acid sphingomyelinase/ceramide and p38 MAPK pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy