SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niazi Ardekani Mehdi 1990 ) "

Sökning: WFRF:(Niazi Ardekani Mehdi 1990 )

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banerjee, Indradumna, 1986-, et al. (författare)
  • Dynamics of Inertial migration of particles in straight channels
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • SUMMARYWe study numerically the entire migration dynamics of spherical and oblate particles in straight rectangular and square cross sectional ducts. The reported results can help in design of straight duct channel based microfluidic systems. KEYWORDS: Inertial microfluidics, Lateral migration, Oblate particles, Straight particles. INTRODUCTIONWe  simulate spherical and oblate rigid particles in straight ducts of different aspect ratios using an Immersed Boundary Method. To the best of our knowledge, this is the first time not only the equilibrium position of particles is described, but also the entire migration dynamics of the particle from the initial to final position, including particle trajectory, velocity, rotation and orientation, are investigated. EXPERIMENTAL The fluid is considered incompressible and its motion is governed by the Navier Stokes and Continuity equations. The numerical approach employed is an Immersed Boundary Method (IBM) with two sets of grid points: an equispaced Eulerian mesh for the fluid flow, and Lagrangian grid points uniformly distributed on the surface of the particle. The flow is set up in square and rectangular cross section ducts with no slip and no penetration boundary conditions (Fig.1). RESULTS AND DISCUSSIONWe examine the lateral motion of spherical and oblate particles using the IBM method mentioned above. While simulating three different spheres in a square duct of duct width to sphere diameter ratio H/Ds= [3.5, 5, 10], we find that the particles focus at closest face-cantered equilibrium position from their point of introduction(Fig.2a). We also show the downstream length needed for a sphere to focus, focusing length, as a function of the distance from the vertical duct symmetry line and as a function of Reynolds number(Fig.2b and c respectively). Spherical particles in rectangular duct tend to move laterally toward the longer length wall and then slowly moves towards the equilibrium position at the face-centre along the long wall(fig.3a). We also observe that the focusing length is longer for spherical particles in a rectangular duct, about three times longer than that in square duct (fig. 3b). In case of an oblate particle flowing through a square duct, the lateral motion towards the face centred equilibrium position is similar to that of a sphere (fig.4a), however there is significant tumbling motion of the particle as it tries to reach equilibrium(fig.4b).In a rectangular duct of aspect ratio 2, the oblate particle reaches a steady configuration on the duct symmetry line at the center of the different faces (fig.5a). The focusing length surprisingly is shorter in a rectangular duct for an oblate particle in contrast to its focusing length in a square duct. This is attributed to the higher lateral velocity of the oblate in the second stage of the migration, that with negligible tumbling(fig.5b). The behavior of three oblate particles in a square duct of duct width to longer diameter ratio H/Ds= [3.5, 5, 10] is different compared to a sphere as the largest oblate tend to focus at the duct cross section diagonals compared to the other two which are at face centred equilibrium as in case of a sphere(fig.6a). We attribute this to the rotation rate of the larger particle which is initially increasing and then decreasing(fig.6b).When it comes to focusing lengths, the smaller particles need longer times to reach their final equilibrium(fig.6c). Another interesting behavior we see is the effect of Reynolds number, where it can be seen that the oblate particles show a tilt of 21 degrees when focusing at equilibrium at certain high Reynolds number (fig.7). CONCLUSIONThe results presented employ a highly accurate interface-resolved numerical algorithm, based on the Immersed Boundary Method to study the entire inertial migration of an oblate particle in both square and rectangular ducts and compare it with that of a single sphere. Currently, we apply a volume penalization method and polymeric drag component to the code to solve for viscoelastic effects in circular microcapillaries. ACKNOWLEDGEMENTSThis work was supported by the European Research Council Grant no. ERC-2013-CoG-616186, TRITOS and by the Swedish Research Council Grant no. VR 2014-5001, COST Action MP1305: Flowing matter, and computation time from SNIC. REFERENCES : Lashgari, Iman, et al. Journal of Fluid Mechanics 819 (2017): 540-561.
  •  
2.
  • Breugem, W. -P, et al. (författare)
  • Structure and dynamics of turbulent flows over highly permeable walls
  • 2015
  • Ingår i: Proceedings - 15th European Turbulence Conference, ETC 2015. - : TU Delft.
  • Konferensbidrag (refereegranskat)abstract
    • Highly porous materials are found in various industrial applications and environmental flows. In previous studies it was found that a turbulent flow along a highly porous wall experiences a higher skin friction as compared to a solid wall with similar surface roughness when the so-called permeability Reynolds number (ReK) is larger than O(1). The main objective of the present study was to gain understanding of the characteristic structures and auto-generation mechanisms of turbulence for ReK ≫ 1. To this purpose the Volume-Averaged Navier-Stokes (VANS) equations were solved in a Direct Numerical Simulation (DNS) of a turbulent flow through a plane channel with an upper solid wall and a lower porous wall at ReK = 5.91. The DNS results are in good agreement with available Particle Image Velocimetry (PIV) data for the same flow geometry. A linear stochastic estimation technique was used to capture the structure associated with the characteristic ejection event that contributes most to the Reynolds shear stress near the porous wall. This structure is similar to a horseshoe vortex. Contrary to the conventional hairpin vortex found near solid walls, this horseshoe vortex has a significantly higher inclination angle with the wall and its legs are much shorter. The latter is consistent with the observed absence of low and high-speed streaks near highly permeable walls. Next, the auto-generation mechanisms of the horseshoe vortex were studied in another DNS in which the horseshoe vortex was released in the Reynolds-averaged flow field obtained from the former DNS. Two distinct auto-generation mechanisms were observed: (1) the generation of new structures at the upstream end of the horseshoe vortex, which evolve rapidly into a turbulent spot with an arrowhead shape, and (2) the interaction of the horseshoe vortex with spanwise oriented Kelvin-Helmholtz vortex rollers originating from the inflexion point in the mean velocity profile near the porous wall. 
  •  
3.
  • Chaparian, Emad, et al. (författare)
  • Particle migration in channel flow of an elastoviscoplastic fluid
  • 2020
  • Ingår i: Journal of Non-Newtonian Fluid Mechanics. - : Elsevier B.V.. - 0377-0257 .- 1873-2631. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the dynamics of a neutrally buoyant rigid sphere carried by an elastoviscoplastic fluid in a pressure-driven channel flow numerically. The yielding to flow is marked by the yield stress which splits the flow into two main regions: the core unyielded region and two sheared yielded regions close to the walls. The particles which are initially in the plug region are observed to translate with the same velocity as the plug without any rotation/migration. Keeping the Reynolds number fixed, we study the effect of elasticity (Weissenberg number) and plasticity (Bingham number) of the fluid on the particle migration inside the sheared regions. In the viscoelastic limit, in the range of studied parameters (low elasticity), inertia is dominant and the particle finds its equilibrium position between the centreline and the wall. The same happens in the viscoplastic limit, yet the yield surface plays the role of centreline. However, the combination of elasticity and plasticity of the suspending fluid (elastoviscoplasticity) trigger particle-focusing: in the elastoviscoplastic flow, for a certain range of Weissenberg numbers (≈0.5), isolated particles migrate all the way to the centreline by entering into the core plug region. This behaviour suggests a particle-focusing process for inertial regimes which was not previously found in a viscoelastic or viscoplastic carrying fluid. 
  •  
4.
  • Demou, Andreas D., et al. (författare)
  • Turbulent Rayleigh-Benard convection in non-colloidal suspensions
  • 2022
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 945
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents direct numerical simulations of turbulent Rayleigh-Benard convection in non-colloidal suspensions, with special focus on the heat transfer modifications in the flow. Adopting a Rayleigh number of 10(8) and Prandtl number of 7, parametric investigations of the particle volume fraction 0 <= Phi <= 40% and particle diameter 1/20 <= d(p)* <= 1/10 with respect to the cavity height, are carried out. The particles are neutrally buoyant, rigid spheres with physical properties that match the fluid phase. Up to Phi = 25 %, the Nusselt number increases weakly but steadily, mainly due to the increased thermal agitation that overcomes the decreased kinetic energy of the flow. Beyond Phi = 30 %, the Nusselt number exhibits a substantial drop, down to approximately 1/3 of the single-phase value. This decrease is attributed to the dense particle layering in the near-wall region, confirmed by the time-averaged local volume fraction. The dense particle layer reduces the convection in the near-wall region and negates the formation of any coherent structures within one particle diameter from the wall. Significant differences between Phi <= 30% and 40% are observed in all statistical quantities, including heat transfer and turbulent kinetic energy budgets, and two-point correlations. Special attention is also given to the role of particle rotation, which is shown to contribute to maintaining high heat transfer rates in moderate volume fractions. Furthermore, decreasing the particle size promotes the particle layering next to the wall, inducing a similar heat transfer reduction as in the highest particle volume fraction case.
  •  
5.
  •  
6.
  • Fornari, Walter, 1989-, et al. (författare)
  • Clustering and increased settling speed of oblate particles at finite Reynolds number
  • 2018
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press. - 0022-1120 .- 1469-7645. ; 848, s. 696-721
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the settling of rigid oblates in a quiescent fluid using interface-resolved direct numerical simulations. In particular, an immersed boundary method is used to account for the dispersed solid phase together with lubrication correction and collision models to account for short-range particle-particle interactions. We consider semi-dilute suspensions of oblate particles with aspect ratio AR = 1/3 and solid volume fractions (Phi = 0.5-10%. The solid-to-fluid density ratio R = 1.02 and the Galileo number (i.e. the ratio between buoyancy and viscous forces) based on the diameter of a sphere with equivalent volume Ga = 60. With this choice of parameters, an isolated oblate falls vertically with a steady wake with its broad side perpendicular to the gravity direction. At this Ga, the mean settling speed of spheres is a decreasing function of the volume Phi and is always smaller than the terminal velocity of the isolated particle, V-t. On the contrary, in dilute suspensions of oblate particles (with Phi <= 1 %), the mean settling speed is approximately 33 % larger than V-t. At higher concentrations, the mean settling speed decreases becoming smaller than the terminal velocity V-t between (Phi = 5 % and 10%. The increase of the mean settling speed is due to the formation of particle clusters that for Phi = 0.5-1 % appear as columnar-like structures. From the pair distribution function we observe that it is most probable to find particle pairs almost vertically aligned. However, the pair distribution function is non-negligible all around the reference particle indicating that there is a substantial amount of clustering at radial distances between 2 and 6c (with c the polar radius of the oblate). Above Phi = 5 %, the hindrance becomes the dominant effect, and the mean settling speed decreases below V-t. As the particle concentration increases, the mean particle orientation changes and the mean pitch angle (the angle between the particle axis of symmetry and gravity) increases from 23 degrees to 47 degrees . Finally, we increase Ga from 60 to 140 for the case with (Phi = 0.5 % and find that the mean settling speed (normalized by V-t) decreases by less than 1 % with respect to Ga = 60. However, the fluctuations of the settling speed around the mean are reduced and the probability of finding vertically aligned particle pairs increases.
  •  
7.
  •  
8.
  • Lupo, Giandomenico, et al. (författare)
  • An Immersed Boundary Method for flows with evaporating droplets
  • 2019
  • Ingår i: International Journal of Heat and Mass Transfer. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0017-9310 .- 1879-2189. ; 143
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new Immersed Boundary Method (IBM) for the interface resolved simulation of spherical droplet evaporation in gas flow. The method is based on the direct numerical simulation of the coupled momentum, energy and species transport in the gas phase, while the exchange of these quantities with the liquid phase is handled through global mass, energy and momentum balances for each droplet. This approach, applicable in the limit of small spherical droplets, allows for accurate and efficient phase coupling without direct solution of the liquid phase fields, thus saving computational cost. We provide validation results, showing that all the relevant physical phenomena and their interactions are correctly captured, both for laminar and turbulent gas flow. Test cases include fixed rate and free evaporation of a static droplet, displacement of a droplet by Stefan flow, and evaporation of a hydrocarbon droplet in homogeneous isotropic turbulence. The latter case is validated against experimental data, showing the feasibility of the method towards the treatment of conditions representative of real life spray fuel applications.
  •  
9.
  •  
10.
  • Majlesara, M., et al. (författare)
  • Numerical study of hot and cold spheroidal particles in a viscous fluid
  • 2020
  • Ingår i: International Journal of Heat and Mass Transfer. - : Elsevier Ltd. - 0017-9310 .- 1879-2189. ; 149
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravity-driven motion of rigid particles with a temperature difference with respect to the surrounding viscous fluid is relevant in many natural and industrial processes, yet this has mainly been investigated for spherical particles. In this work we study the influence of the Grashof number (Gr) on the settling velocity and the drag coefficient CD of a single spheroidal particle of different aspect ratios (1/3, 1 and 3). The discrete forcing immersed boundary method (IBM) is employed to represent the fluid-solid interaction in both momentum and temperature equations, while the Boussinesq approximation is used for the coupling of momentum and temperature. The simulations show that the drag coefficient of any spheroidal particle below the onset of secondary motion can be predicted by the results of the settling spheres at the desired Grashof number as the main effect of the particle shape at low Galileo number (Ga) and sufficiently small Gr/Ga2 is found to be the change in the frontal area of the particle. Furthermore, we identify the regions of stable sedimentation (vertical path) in the Ga−Gr/Ga2 plane for the 3 particle shapes, investigated in this study. We show that the critical Ga beyond which the particle exhibits the zigzagging motion, is considerably smaller for oblate particles in comparison to prolate ones at low Gr/Ga2. However, both spheroidal shapes indicate a similar behavior as Gr/Ga2 increases beyond 0.5. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy