SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nicotera P) "

Sökning: WFRF:(Nicotera P)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galluzzi, L, et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.
  • 2009
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:8, s. 1093-107
  • Forskningsöversikt (refereegranskat)abstract
    • Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
  •  
2.
  •  
3.
  •  
4.
  • Schierle, G S, et al. (författare)
  • Differential effects of Bcl-2 overexpression on fibre outgrowth and survival of embryonic dopaminergic neurons in intracerebral transplants
  • 1999
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X. ; 11:9, s. 81-3073
  • Tidskriftsartikel (refereegranskat)abstract
    • The causes of death of transplanted neurons are not known in detail, but apoptotic mechanisms involving caspase activation are likely to play a role. We examined whether overexpression of the anti-apoptotic protein Bcl-2 may enhance the survival of dopaminergic [tyrosine hydroxylase (TH)-immunoreactive] grafted neurons. For this purpose, we prepared cells from embryonic day 13 ventral mesencephalon (VM) of mice overexpressing human Bcl-2, or from their wild-type littermates. The bcl-2 transgene was strongly expressed in these cells, and resulted in protection of neuronal cultures from death triggered by serum deprivation or exposure to staurosporine. To model pretransplantation stress more closely in vitro, we stored dissociated embryonic mesencephalic cells for 8 h in the same type of medium used for intracerebral transplantation. This resulted in massive cell death as quantified by lactate dehydrogenase (LDH) release, and increased DNA fragmentation. Although this cell loss was strongly reduced by a caspase inhibitor, Bcl-2 had no significant protective effect. Finally, mesencephalic cell suspensions were xenografted into the striatum of immunosuppressed hemiparkinsonian rats. Neither the survival of TH-immunopositive transplanted neurons nor the functional recovery of the rats was improved by Bcl-2, although the Bcl-2 protein was strongly expressed in transgenic grafts 5 weeks after implantation, and dopaminergic fibre outgrowth from the grafts was significantly improved. These data suggest that cell death in neuronal transplants involves apoptotic mechanisms that can bypass negative regulation by Bcl-2.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • BONFOCO, E, et al. (författare)
  • Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures
  • 1995
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 92:16, s. 7162-7166
  • Tidskriftsartikel (refereegranskat)abstract
    • N-Methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity may depend, in part, on the generation of nitric oxide (NO.) and superoxide anion (O2.-), which react to form peroxynitrite (OONO-). This form of neurotoxicity is thought to contribute to a final common pathway of injury in a wide variety of acute and chronic neurologic disorders, including focal ischemia, trauma, epilepsy, Huntington disease, Alzheimer disease, amyotrophic lateral scelerosis, AIDS dementia, and other neurodegenerative diseases. Here, we report that exposure of cortical neurons to relatively short durations or low concentrations of NMDA, S-nitrosocysteine, or 3-morpholinosydnonimine, which generate low levels of peroxynitrite, induces a delayed form of neurotoxicity predominated by apoptotic features. Pretreatment with superoxide dismutase and catalase to scavenge O2.- partially prevents the apoptotic process triggered by S-nitrosocysteine or 3-morpholinosydnonimine. In contrast, intense exposure to high concentrations of NMDA or peroxynitrite induces necrotic cell damage characterized by acute swelling and lysis, which cannot be ameliorated by superoxide dismutase and catalase. Thus, depending on the intensity of the initial insult, NMDA or nitric oxide/superoxide can result in either apoptotic or necrotic neuronal cell damage.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy