SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nielsen Carsten Uhd) "

Sökning: WFRF:(Nielsen Carsten Uhd)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonescu, Irina E., et al. (författare)
  • Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties : Implications for Renal Acamprosate Secretion and Drug-Drug Interactions
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a K-m-value of approximately 700 mu M. Probenecid inhibited OAT1-mediated acamprosate uptake with a K-i-value of approximately 13 mu M, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.
  •  
2.
  • Antonescu, Irina E, et al. (författare)
  • The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers : A Paracellular Modeling Approach
  • 2019
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 16:11, s. 4636-4650
  • Tidskriftsartikel (refereegranskat)abstract
    • In drug development, estimating fraction absorbed (Fa) in man for permeability-limited compounds is important but challenging. To model Fa of such compounds from apparent permeabilities (Papp) across filter-grown Caco-2 cell monolayers, it is central to elucidate the intestinal permeation mechanism(s) of the compound. The present study aims to refine a computational permeability model to investigate the relative contribution of paracellular and transcellular routes to the Papp across Caco-2 monolayers of the permeability-limited compound acamprosate having a bioavailability of ∼11%. The Papp values of acamprosate and of several paracellular marker molecules were measured. These Papp values were used to refine system-specific parameters of the Caco-2 monolayers, that is, paracellular pore radius, pore capacity, and potential drop. The refined parameters were subsequently used as an input in modeling the permeability (Pmodeled) of the tested compounds using mathematical models collected from two published permeability models. The experimental data show that acamprosate Papp across Caco-2 monolayers is low and similar in both transport directions. The obtained acamprosate Papp, 1.56 ± 0.28 × 10-7 cm·s-1, is similar to the Papp of molecular markers for paracellular permeability, namely, mannitol (2.72 ± 0.24 × 10-7 cm·s-1), lucifer yellow (1.80 ± 0.35 × 10-7 cm·s-1), and fluorescein (2.10 ± 0.28 × 10-7 cm·s-1), and lower than that of atenolol (7.32 ± 0.60 × 10-7 cm·s-1; mean ± SEM, n = 3-6), while the end-point amount of acamprosate internalized by the cell monolayer, Qmonolayer, was lower than that of mannitol. Acamprosate did not influence the barrier function of the monolayers since it altered neither the Papp of the three paracellular markers nor the transepithelial electrical resistance (TEER) of the cell monolayer. The Pmodeled for all the paracellular markers and acamprosate was dominated by the Ppara component and matched the experimentally obtained Papp. Furthermore, acamprosate did not inhibit the uptake of probe substrates for solute carriers PEPT1, TAUT, PAT1, EAAT1, B0,+AT/rBAT, OATP2B1, and ASBT expressed in Caco-2 cells. Thus, the Pmodeled estimated well Ppara, and the paracellular route appears to be the predominant mechanism for acamprosate Papp across Caco-2 monolayers, while the alternative transcellular routes, mediated by passive diffusion or carriers, are suggested to only play insignificant roles.
  •  
3.
  • Perland, Emelie, 1988- (författare)
  • Atypical Solute Carriers : Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Solute carriers (SLCs) constitute the largest family of membrane-bound transporter proteins in humans, and they convey transport of nutrients, ions, drugs and waste over cellular membranes via facilitative diffusion, co-transport or exchange. Several SLCs are associated with diseases and their location in membranes and specific substrate transport makes them excellent as drug targets. However, as 30 % of the 430 identified SLCs are still orphans, there are yet numerous opportunities to explain diseases and discover potential drug targets. Among the novel proteins are 29 atypical SLCs of major facilitator superfamily (MFS) type. These share evolutionary history with the remaining SLCs, but are orphans regarding expression, structure and/or function. They are not classified into any of the existing 52 SLC families. The overall aim in this thesis was to study the atypical SLCs with a focus on their phylogenetic clustering, evolutionary conservation, structure, protein expression in mouse brains and if and how their gene expressions were affected upon changed food intake. In Papers I-III, the focus was on specific proteins, MFSD5 and MFSD11 (Paper I), MFSD1 and MFSD3 (Paper II), and MFSD4A and MFSD9 (Paper III). They all shared neuronal expression, and their transcription levels were altered in several brain areas after subjecting mice to food deprivation or a high-fat diet. In Paper IV, the 29 atypical SLCs of MFS type were examined. They were divided into 15 families, based on phylogenetic analyses and sequence identities, to facilitate functional studies. Their sequence relationships with other SLCs were also established. Some of the proteins were found to be well conserved with orthologues down to nematodes and insects, whereas others emerged at first in vertebrates. The atypical SLCs of MFS type were predicted to have the common MFS structure, composed of 12 transmembrane segments. With single-cell RNA sequencing and in situ proximity ligation assay, co-expression of atypical SLCs was analysed to get a comprehensive understanding of how membrane-bound transporters interact. In conclusion, the atypical SLCs of MFS type are suggested to be novel SLC transporters, involved in maintaining nutrient homeostasis through substrate transport.
  •  
4.
  • Våbenø, Jon, et al. (författare)
  • Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter: implications for design of hPEPT1 targeted prodrugs.
  • 2005
  • Ingår i: Bioorganic & medicinal chemistry. - : Elsevier BV. - 0968-0896. ; 13:6, s. 1977-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified by conformational analysis and 2D dihedral driving analysis of 15 hPEPT1 substrates, which suggested that psi(1) approximately 165 degrees , omega(1) approximately 180 degrees , and phi(2) approximately 280 degrees were descriptive of the bioactive conformation. Subsequently, the conformational energy required to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained between DeltaE(bbone) and log1/K(i), showing that DeltaE(bbone) contributes significantly to the experimentally observed affinity for hPEPT1 ligands. Qualitatively, the results revealed that compounds classified as high affinity ligands (K(i)<0.5 mM) all have a calculated DeltaE(bbone)<1 kcal/mol, whereas medium and low-affinity compounds (0.5 mM
  •  
5.
  • Våbenø, Jon, et al. (författare)
  • Dipeptidomimetic ketomethylene isosteres as pro-moieties for drug transport via the human intestinal di-/tripeptide transporter hPEPT1: design, synthesis, stability, and biological investigations.
  • 2004
  • Ingår i: Journal of medicinal chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 47:19, s. 4755-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Five dipeptidomimetic-based model prodrugs containing ketomethylene amide bond replacements were synthesized from readily available alpha,beta-unsaturated gamma-ketoesters. The model drug (BnOH) was attached to the C-terminus or to one of the side chain positions of the dipeptidomimetic. The stability, the affinity for the di-/tripeptide transporter hPEPT1, and the transepithelial transport properties of the model prodrugs were investigated. ValPsi[COCH(2)]Asp(OBn) was the compound with highest chemical stability in buffers at pH 6.0 and 7.4, with half-lives of 190 and 43 h, respectively. All five compounds showed high affinity for hPEPT1 (K(i) values < 1 mM), and PhePsi[COCH(2)]Asp(OBn) and ValPsi[COCH(2)]Asp(OBn) had the highest affinities with K(i) values of 68 and 19 microM, respectively. An hPEPT1-mediated transport component was demonstrated for the transepithelial transport of three compounds, a finding that was corroborated by hPEPT1-mediated intracellular uptake. The results indicate that the stabilized Phe-Asp and Val-Asp derivatives are promising pro-moieties in a prodrug approach targeting hPEPT1.
  •  
6.
  • Våbenø, Jon, et al. (författare)
  • Phe-Gly dipeptidomimetics designed for the di-/tripeptide transporters PEPT1 and PEPT2: synthesis and biological investigations.
  • 2004
  • Ingår i: Journal of medicinal chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 47:4, s. 1060-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of five Phe-Gly dipeptidomimetics containing different amide bond replacements have been synthesized in a facile way from the readily available unsaturated ketoester 1, and their affinities for the di-/tripeptide transporters hPEPT1 (Caco-2 cells) and rPEPT2 (SKPT cells) were tested. The compounds contained the amide bond isosteres ketomethylene (2a), (R)- and (S)-hydroxyethylidene (3a and 4a), and (R)- and (S)-hydroxyethylene (5a and 6a) to provide information on the conformational and stereochemical requirements for hPEPT1 and rPEPT2 affinity. The affinity studies showed that for rPEPT2 there is no significant difference in affinity between the ketomethylene isostere 2a and the natural substrate Phe-Gly (K(i) values of 18.8 and 14.6 microM, respectively). Also the affinities for hPEPT1 are in the same range (K(i) values of 0.40 and 0.20 mM, respectively). This corroborates earlier findings that the amide bond as such is not essential for binding to PEPTX, but the results also reveal possible differences in the binding of ketomethylene isosteres to hPEPT1 and rPEPT2. The trans-hydroxyethylidene and hydroxyethylene isosteres proved to be poor substrates for PEPTX. These results provide new information about the importance of flexibility and of the stereochemistry at the C(4)-position for this class of compounds. Furthermore, the intracellular uptake of 2a-4a in Caco-2 cells was investigated, showing a 3-fold reduction of the uptake of 2a in the presence of the competetive inhibitor Gly-Pro, indicating contribution from an active transport component. No active uptake of 3a and 4a was observed. Transepithelial transport studies also indicated active transport of 2a across Caco-2 monolayers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy