SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nielsen Henriette S) "

Sökning: WFRF:(Nielsen Henriette S)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Oddsson, Asmundur, et al. (författare)
  • Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
  •  
3.
  • Chandrasekaran, Abinaya, et al. (författare)
  • Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3
  • 2021
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; , s. 2736-2751
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.
  •  
4.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 55:11, s. 1807-19
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n=65,405), maternal (n=61,228) and paternal (n=52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.
  •  
5.
  • Solé Navais, Pol, et al. (författare)
  • Genetic effects on the timing of parturition and links to fetal birth weight.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718. ; 55:4, s. 559-567
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n=195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n=136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.
  •  
6.
  • Wagenaar-Bos, Ineke G. A., et al. (författare)
  • Functional C1-inhibitor diagnostics in hereditary angioedema: Assay evaluation and recommendations
  • 2008
  • Ingår i: Journal of Immunological Methods. - : Elsevier BV. - 1872-7905 .- 0022-1759. ; 338:1-2, s. 14-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent episodes of potentially life-threatening angioedema. The most widespread underlying genetic deficiency is a heterozygous deficiency of the serine protease inhibitor Cl esterase inhibitor (C1-Inh). In addition to low C4 levels, the most important laboratory parameter for correct diagnosis of HAE or angioedema due to acquired C1-Inh deficiency is reduced C1-Inh function (fC1-Inh). No direct recommendations about the assays for fC1-Inh or sample handling conditions are available, although this would prove especially useful when a laboratory first starts to offer assays on fC1-Inh for HAE diagnosis. In the present study we evaluated the performance of fC1-Inh assays in the 15 different laboratories that are specialised in HAE diagnostics and assessed inter-laboratory variation with each laboratory using their own assays and standards. A double-blind survey was conducted using plasma/serum samples from healthy donors and HAE patients and the uniformity of HAE diagnosis was evaluated. It can be concluded that the diagnosis of fC1-Inh deficiency was made correctly inmost cases in this survey. We can recommend the chromogenic assay for the determination of fC1-Inh, while the complex ELISA needs further investigation. (C) 2008 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy