SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niemeyer Thomas) "

Sökning: WFRF:(Niemeyer Thomas)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Heinken, Thilo, et al. (författare)
  • The European Forest Plant Species List (EuForPlant): Concept and applications
  • 2022
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1654-1103 .- 1100-9233. ; 33:3, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Question: When evaluating forests in terms of their biodiversity, distinctiveness and naturalness, the affinity of the constituent species to forests is a crucial parameter. Here we ask to what extent are vascular plant species associated with forests, and does species’ affinity to forests vary between European regions?Location: Temperate and boreal forest biome of Northwestern and Central Europe. Methods: We compiled EuForPlant, a new extensive list of forest vascular plant spe- cies in 24 regions spread across 13 European countries using vegetation databases and expert knowledge. Species were region-specifically classified into four categories reflecting the degree of their affinity to forest habitats: 1.1, species of forest interiors; 1.2, species of forest edges and forest openings; 2.1, species that can be found in forest as well as open vegetation; and 2.2, species that can be found partly in forest, but mainly in open vegetation. An additional “O” category was distinguished, covering species typical for non-forest vegetation.Results: EuForPlant comprises 1,726 species, including 1,437 herb-layer species, 159 shrubs, 107 trees, 19 lianas and 4 epiphytic parasites. Across regions, generalist forest species (with 450 and 777 species classified as 2.1 and 2.2, respectively) significantly outnumbered specialist forest species (with 250 and 137 species classified as 1.1 and 1.2, respectively). Even though the degree of shifting between the categories of for- est affinity among regions was relatively low (on average, 17.5%), about one-third of the forest species (especially 1.2 and 2.2) swapped categories in at least one of the study regions.Conclusions: The proposed list can be used widely in vegetation science and global change ecology related to forest biodiversity and community dynamics. Shifting of forest affinity among regions emphasizes the importance of a continental-scale forest plant species list with regional specificity.
  •  
3.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy