SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Niethammer D) "

Search: WFRF:(Niethammer D)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gehlen, J., et al. (author)
  • First genome-wide association study of esophageal atresia identifies three genetic risk loci at CTNNA3, FOXF1/FOXC2/FOXL1, and HNF1B
  • 2022
  • In: Human Genetics and Genomics Advances. - : Elsevier BV. - 2666-2477. ; 3:2
  • Journal article (peer-reviewed)abstract
    • Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is the most common congenital malformation of the upper digestive tract. This study represents the first genome-wide association study (GWAS) to identify risk loci for EA/TEF. We used a European case-control sample comprising 764 EA/TEF patients and 5,778 controls and observed genome-wide significant associations at three loci. On chromosome 10q21 within the gene CTNNA3 (p = 2.11 × 10−8; odds ratio [OR] = 3.94; 95% confidence interval [CI], 3.10–5.00), on chromosome 16q24 next to the FOX gene cluster (p = 2.25 × 10−10; OR = 1.47; 95% CI, 1.38–1.55) and on chromosome 17q12 next to the gene HNF1B (p = 3.35 × 10−16; OR = 1.75; 95% CI, 1.64–1.87). We next carried out an esophageal/tracheal transcriptome profiling in rat embryos at four selected embryonic time points. Based on these data and on already published data, the implicated genes at all three GWAS loci are promising candidates for EA/TEF development. We also analyzed the genetic EA/TEF architecture beyond the single marker level, which revealed an estimated single-nucleotide polymorphism (SNP)-based heritability of around 37% ± 14% standard deviation. In addition, we examined the polygenicity of EA/TEF and found that EA/TEF is less polygenic than other complex genetic diseases. In conclusion, the results of our study contribute to a better understanding on the underlying genetic architecture of ET/TEF with the identification of three risk loci and candidate genes. © 2022 The Authors
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Nguyen, Son Tien, et al. (author)
  • Developing silicon carbide for quantum spintronics
  • 2020
  • In: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 116:19
  • Journal article (peer-reviewed)abstract
    • In current long-distance communications, classical information carried by large numbers of particles is intrinsically robust to some transmission losses but can, therefore, be eavesdropped without notice. On the other hand, quantum communications can provide provable privacy and could make use of entanglement swapping via quantum repeaters to mitigate transmission losses. To this end, considerable effort has been spent over the last few decades toward developing quantum repeaters that combine long-lived quantum memories with a source of indistinguishable single photons. Multiple candidate optical spin qubits in the solid state, including quantum dots, rare-earth ions, and color centers in diamond and silicon carbide (SiC), have been developed. In this perspective, we give a brief overview on recent advances in developing optically active spin qubits in SiC and discuss challenges in applications for quantum repeaters and possible solutions. In view of the development of different material platforms, the perspective of SiC spin qubits in scalable quantum networks is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view