SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nika M. C.) "

Sökning: WFRF:(Nika M. C.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • García-Gómez, Elisa, et al. (författare)
  • Characterization of scrubber water discharges from ships using comprehensive suspect screening strategies based on GC-APCI-HRMS
  • 2023
  • Ingår i: Chemosphere. - 0045-6535 .- 1879-1298. ; 343
  • Tidskriftsartikel (refereegranskat)abstract
    • An extended suspect screening approach for the comprehensive chemical characterization of scrubber discharge waters from exhaust gas cleaning systems (EGCSs), used to reduce atmospheric shipping emissions of sulphur oxides, was developed. The suspect screening was based on gas chromatography coupled with high-resolution mass spectrometry (GC-HRMS) and focused on the identification of polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives (alkyl-PAHs), which are among the most frequent and potentially toxic organic contaminants detected in these matrices. Although alkyl-PAHs can be even more abundant than parent compounds, information regarding their occurrence in scrubber waters is scarce. For compound identification, an in-house compound database was built, with 26 suspect groups, including 25 parent PAHs and 23 alkyl-PAH homologues. With this approach, 7 PAHs and 12 clusters of alkyl-PAHs were tentatively identified, whose occurrence was finally confirmed by target analysis using GC coupled with tandem mass spectrometry (GC-MS/MS). Finally, a retrospective analysis was performed to identify other relevant (poly)cyclic aromatic compounds (PACs) of potential concern in scrubber waters. According to it, 18 suspect groups were tentatively identified, including biphenyls, dibenzofurans, dibenzothiophenes and oxygenated PAHs derivatives. All these compounds could be used as relevant markers of scrubber water contamination in heavy traffic marine areas and be considered as potential stressors when evaluating scrubber water toxicity.
  •  
2.
  • Downing, Andrea S., et al. (författare)
  • Was Lates Late? : A Null Model for the Nile Perch Boom in Lake Victoria
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10, s. e76847-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nile perch (Lates niloticus) suddenly invaded Lake Victoria between 1979 and 1987, 25 years after its introduction in the Ugandan side of the lake. Nile perch then replaced the native fish diversity and irreversibly altered the ecosystem and its role to lakeshore societies: it is now a prised export product that supports millions of livelihoods. The delay in the Nile perch boom led to a hunt for triggers of the sudden boom and generated several hypotheses regarding its growth at low abundances - all hypotheses having important implications for the management of Nile perch stocks. We use logistic growth as a parsimonious null model to predict when the Nile perch invasion should have been expected, given its growth rate, initial stock size and introduction year. We find the first exponential growth phase can explain the timing of the perch boom at the scale of Lake Victoria, suggesting that complex mechanisms are not necessary to explain the Nile perch invasion or its timing. However, the boom started in Kenya before Uganda, indicating perhaps that Allee effects act at smaller scales than that of the whole Lake. The Nile perch invasion of other lakes indicates that habitat differences may also have an effect on invasion success. Our results suggest there is probably no single management strategy applicable to the whole lake that would lead to both efficient and sustainable exploitation of its resources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy