SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nikamo P) "

Sökning: WFRF:(Nikamo P)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backlund, L., et al. (författare)
  • P2RX7: Expression Responds to Sleep Deprivation and Associates with Rapid Cycling in Bipolar Disorder Type 1
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Rapid cycling is a severe form of bipolar disorder with an increased rate of episodes that is particularly treatment-responsive to chronotherapy and stable sleep-wake cycles. We hypothesized that the P2RX7 gene would be affected by sleep deprivation and be implicated in rapid cycling. Objectives: To assess whether P2RX7 expression is affected by total sleep deprivation and if variation in P2RX7 is associated with rapid cycling in bipolar patients. Design: Gene expression analysis in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and case-case and case-control SNP/haplotype association analyses in patients. Participants: Healthy volunteers at the sleep research center, University of California, Irvine Medical Center (UCIMC), USA (n = 8) and Swedish outpatients recruited from specialized psychiatric clinics for bipolar disorder, diagnosed with bipolar disorder type 1 (n = 569; rapid cycling: n = 121) and anonymous blood donor controls (n = 1,044). Results: P2RX7 RNA levels were significantly increased during sleep deprivation in PBMCs from healthy volunteers (p = 2.3*10(-9)). The P2RX7 rs2230912_A allele was more common (OR = 2.2, p = 0.002) and the ACGTTT haplotype in P2RX7 (rs1718119 to rs1621388) containing the protective rs2230912_G allele (OR = 0.45-0.49, p = 0.003-0.005) was less common, among rapid cycling cases compared to non-rapid cycling bipolar patients and blood donor controls. Conclusions: Sleep deprivation increased P2RX7 expression in healthy persons and the putatively low-activity P2RX7 rs2230912 allele A variant was associated with rapid cycling in bipolar disorder. This supports earlier findings of P2RX7 associations to affective disorder and is in agreement with that particularly rapid cycling patients have a more vulnerable diurnal system.
  •  
2.
  • Lavebratt, C., et al. (författare)
  • The KMO allele encoding Arg(452) is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression
  • 2014
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 19:3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P = 0.005, n = 19) or schizophrenia (P = 0.02, n = 36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P = 0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P = 0.03) and reduced lymphoblastoid and hippocampal KMO expression (P <= 0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Fawwaz, S., et al. (författare)
  • No evidence of association of the PDCD1 gene with Type 1 diabetes
  • 2007
  • Ingår i: Diabetic Medicine. - : Wiley. - 0742-3071 .- 1464-5491. ; 24:12, s. 1473-1477
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To test the association between the immunoreceptor PD-1 (PDCD1) gene and Type 1 diabetes mellitus (T1DM). This gene has been reported to be associated with other autoimmune diseases such as systemic lupus erythematosus (SLE) as well as T1DM. Methods: Genotyping of single nucleotide polymorphisms (SNPs) in the PDCD1 gene was performed using polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP), pyrosequencing and TaqMan in two separate cohorts of Swedish patients and control subjects: a family study consisting of 184 multiplex and eight simplex families and a case-control study consisting of 586 patients and 836 control subjects. Three SNPs were genotyped: PD-1 7146, PD-1 7785 and PD-1 8738. Results: We did not detect any association or linkage between SNPs in PDCD1 and T1DM. We further performed a meta-analysis for association of PD-1 7146, PD-1 7785 and PD-1 8738 to T1DM. We detected heterogeneity in association with weak evidence for overall association. Conclusions: We conclude that PDCD1 is unlikely to be a major susceptibility gene for T1DM.
  •  
8.
  •  
9.
  • Johansson, A. G. M., et al. (författare)
  • Polymorphisms in AKR1C4 and HSD3B2 and differences in serum DHEAS and progesterone are associated with paranoid ideation during mania or hypomania in bipolar disorder
  • 2012
  • Ingår i: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X. ; 22:9, s. 632-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Paranoia is commonly a mood-incongruent psychotic symptom of mania which may be related to dopamine dysregulation. Progesterone and its metabolite allopregnanolone (ALLO) have been found in animals to antagonize the effects of dopamine. We therefore examined serum progesterone, its endogenous antagonist DHEAS and polymorphisms of the genes coding for certain steroidogenetic enzymes (AKR1C4, HSD3B2, and SRD5A1) in 64 males and 96 females with bipolar 1 or 2 disorder with or without paranoid ideation during mood elevation. Euthymic morning serum progesterone, DHEAS and cortisol concentrations were measured in males and in premenopausal women who were in follicular phase and not taking oral contraceptives. In women only, SNPs in AKR1C4 reduced the likelihood of having exhibited paranoid ideation by circa 60%. The haplotype of all 4 SNPs in the AKR1C4 gene reduced the risk of exhibiting paranoia by 80% (OR 0.19, 95% CI 0.06-0.61, p=0.05). A history of paranoid ideation was not, however, related to progesterone or DHEAS concentration. Serum DHEAS and progesterone concentrations were lower in men who had shown paranoid ideation during mania/hypomania compared with those who had not (F=7.30, p = 0.006) however this was not coupled to polymorphisms in the selected genes. The ancestral G in rs4659174 in HSD3B2 was in men associated with a lower risk of paranoid ideation (likelihood ratio chi(2) 3.97, p = 0.046, OR 0.31 (95% CI 0.10-0.96)) but did not correlate with hormone concentrations. Hence, gene variants in the steroidogenetic pathway and steroids concentration differences may be involved in the susceptibility to paranoia during mood elevation. (C) 2012 Elsevier B.V. and ECNP. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy