SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nikolaou Konstantin) "

Sökning: WFRF:(Nikolaou Konstantin)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dewey, Marc, et al. (författare)
  • Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia
  • 2020
  • Ingår i: Nature Reviews Cardiology. - : Springer Nature. - 1759-5002 .- 1759-5010. ; 17:7, s. 427-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
  •  
2.
  • Gatidis, Sergios, et al. (författare)
  • State of affairs of hybrid imaging in Europe : two multi-national surveys from 2017
  • 2019
  • Ingår i: Insights into Imaging. - : Springer. - 1869-4101. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To assess the current state of hybrid imaging in Europe with respect to operations, reading and reporting, as well as qualification and training.Methods: The first survey (LOCAL) was sent to the heads of the departments of radiology and nuclear medicine in Europe in 2017, including 15 questions regarding the organisation of hybrid imaging operations, reporting strategies for PET/CT and the existence of relevant training programmes. The second survey (NATIONAL) consisted of 10 questions and was directed to the national ministries of health of 37 European countries addressing combined training options in radiology and nuclear medicine.Results: In the LOCAL survey, 61 valid responses from 26 European countries were received. In almost half of the institutions, hybrid imaging was performed within a single department, mainly in nuclear medicine departments (31%). In half of the centres (51%), PET/CT reports were performed jointly, while in 20% of the centres, reporting was performed by nuclear medicine physicians. Radiologists were responsible for presenting hybrid imaging results in clinical boards in 34% of responding sites. Integrated hybrid imaging training was available in 41% sites. In the NATIONAL survey, responses from 34 countries were received and demonstrated a heterogeneous landscape of official training possibilities in radiology and nuclear medicine with limited opportunities for additional qualifications in hybrid imaging.Conclusions: The results of these surveys demonstrate a notable heterogeneity in the current practice of hybrid imaging throughout Europe. This heterogeneity exists despite the general consensus that strong professional cooperation is required in order to ensure high clinical quality and to strengthen the clinical role of hybrid imaging.
  •  
3.
  • Meinel, Felix G., et al. (författare)
  • Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods: Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results: Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion: In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.
  •  
4.
  •  
5.
  • Meinel, Felix G., et al. (författare)
  • Lung tumors on multimodal radiographs derived from grating-based X-ray imaging - A feasibility study
  • 2014
  • Ingår i: Physica Medica. - : Elsevier BV. - 1120-1797. ; 30:3, s. 352-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this study was to assess whether grating-based X-ray imaging may have a role in imaging of pulmonary nodules on radiographs. Materials and methods: A mouse lung containing multiple lung tumors was imaged using a small-animal scanner with a conventional X-ray source and a grating interferometer for phase-contrast imaging. We qualitatively compared the signal characteristics of lung nodules on transmission, dark-field and phase-contrast images. Furthermore, we quantitatively compared signal characteristics of lung tumors and the adjacent lung tissue and calculated the corresponding contrast-to-noise ratios. Results: Of the 5 tumors visualized on the transmission image, 3/5 tumors were clearly visualized and 1 tumor was faintly visualized in the dark-field image as areas of decreased small angle scattering. In the phase-contrast images, 3/5 tumors were clearly visualized, while the remaining 2 tumors were faintly visualized by the phase-shift occurring at their edges. No additional tumors were visualized in either the dark-field or phase-contrast images. Compared to the adjacent lung tissue, lung tumors were characterized by a significant decrease in transmission signal (median 0.86 vs. 0.91, p = 0.04) and increase in dark-field signal (median 0.71 vs. 0.65, p = 0.04). Median contrast-to-noise ratios for the visualization of lung nodules were 4.4 for transmission images and 1.7 for dark-field images (p = 0.04). Conclusion: Lung nodules can be visualized on all three radiograph modalities derived from grating-based X-ray imaging. However, our initial data suggest that grating-based multimodal X-ray imaging does not increase the sensitivity of chest radiographs for the detection of lung nodules. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
  •  
6.
  • Schleede, Simone, et al. (författare)
  • Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 109:44, s. 17880-17885
  • Tidskriftsartikel (refereegranskat)abstract
    • In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs.
  •  
7.
  • Schwab, Felix, et al. (författare)
  • Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue
  • 2013
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 23:3, s. 236-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF /CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all Rats (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI.
  •  
8.
  • Velroyen, Astrid, et al. (författare)
  • Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.
  •  
9.
  • Yaroshenko, Andre, et al. (författare)
  • Pulmonary Emphysema Diagnosis with a Preclinical Small-Animal X-ray Dark-Field Scatter-Contrast Scanner
  • 2013
  • Ingår i: Radiology. - : Radiological Society of North America (RSNA). - 1527-1315 .- 0033-8419. ; 269:2, s. 426-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To test the hypothesis that the joint distribution of x-ray transmission and dark-field signals obtained with a compact cone-beam preclinical scanner with a polychromatic source can be used to diagnose pulmonary emphysema in ex vivo murine lungs. Materials and Methods: The animal care committee approved this study. Three excised murine lungs with pulmonary emphysema and three excised murine control lungs were imaged ex vivo by using a grating-based micro-computed tomographic (CT) scanner. To evaluate the diagnostic value, the natural logarithm of relative transmission and the natural logarithm of dark-field scatter signal were plotted on a per-pixel basis on a scatterplot. Probability density function was fit to the joint distribution by using principle component analysis. An emphysema map was calculated based on the fitted probability density function. Results: The two-dimensional scatterplot showed a characteristic difference between control and emphysematous lungs. Control lungs had lower average median logarithmic transmission (-0.29 vs -0.18, P = .1) and lower average dark-field signal (-0.54 vs -0.37, P = .1) than emphysematous lungs. The angle to the vertical axis of the fitted regions also varied significantly (7.8 degrees for control lungs vs 15.9 degrees for emphysematous lungs). The calculated emphysema distribution map showed good agreement with histologic findings. Conclusion: X-ray dark-field scatter images of murine lungs obtained with a preclinical scanner can be used in the diagnosis of pulmonary emphysema. (C) RSNA, 2013
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy