SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nishide Hiroyuki) "

Sökning: WFRF:(Nishide Hiroyuki)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oka, Kouki, et al. (författare)
  • Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries
  • 2019
  • Ingår i: Electrochemistry communications. - : Elsevier. - 1388-2481 .- 1873-1902. ; 105
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-ion batteries (LIBs) raise safety and environmental concerns, which mostly arise from their toxic and flammable electrolytes and the extraction of limited material resources by mining. Recently, water-in-salt electrolytes (WiSEs), in which a large amount of lithium salt is dissolved in water, have been proposed to allow for assembling safe and high-voltage (>3.0 V) aqueous LIBs. In addition, organic materials derived from abundant building blocks and their tunable properties could provide safe and sustainable replacements for inorganic cathode materials. In the current work, the electrochemical properties of a conducting redox polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) with hydroquinone (HQ) pendant groups have been characterized in WiSEs. The quinone redox reaction occurs within the potential region where the polymer is conducting, and fast redox conversion that involves lithium cycling during pendant group redox conversion was observed. These properties make conducting redox polymers promising candidates as cathode-active materials for safe and high-energy aqueous LIBs. An organic-based aqueous LIB, with a HQ-PEDOT as a cathode, Li4Ti5O12 (LTO) as an anode, and ca. 15 m lithium bis(trifluoromethanesulfonyl)imide water/dimethyl carbonate (DMC) as electrolyte, yielded an output voltage of 1.35 V and high rate capabilities up to 500C.
  •  
2.
  • Oka, Kouki, et al. (författare)
  • Conducting Redox Polymer as Organic Anode Material for Polymer-Manganese Secondary Batteries
  • 2020
  • Ingår i: ChemElectroChem. - : Wiley. - 2196-0216. ; 7:15, s. 3336-3340
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese-based aqueous batteries have attracted significant attention due to their earth-abundant components and low environmental burden. However, state-of-the-art manganese-zinc batteries are poorly rechargeable, owing to dendrite formation on the zinc anode. Organic materials could provide a safe and sustainable replacement. In the present work, a conducting redox polymer (CRP) based on a trimer of EPE (E=3,4-ethylenedioxythiophene; P=3,4-propylenedioxythiophene) and a naphthoquinone (NQ) pendant group is used as anode in polymer-manganese secondary batteries. The polymer shows stable redox conversion around+0.05 V vs. Ag/AgCl, and fast kinetics that involves proton cycling during pendant group redox conversion. For the first time, a CRP-manganese secondary battery was fabricated with pEP(NQ)E as the anode, manganese oxide as the cathode, and manganese-containing acidic aqueous solution as the electrolyte. This battery yielded a discharge voltage of 1.0 V and a discharging capacity of 76 mAh/ganode over >50 cycles and high rate capabilities (up to 10C).
  •  
3.
  •  
4.
  • Yang, Li, 1987- (författare)
  • Terephthalate-Functionalized Conducting Redox Polymers for Energy Storage Applications
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic electrode materials, as sustainable and environmental benign alternatives to inorganic electrode materials, show great promise for achieving cheap, light, versatile and disposable devices for electrical energy storage applications. Conducting redox polymers (CRPs) are a new class of organic electrode materials where the charge storage capacity is provided by the redox chemistry of functional pendent groups and electronic conductivity is provided by the doped conducting polymer backbone, enabling the production of energy storage devices with high charge storage capacity and high power capability. This pendant-conducting polymer backbone combination can solve two of the main problems associated with organic molecule-based electrode materials, i.e. the dissolution of the active material and the sluggish charge transport within the material. In this thesis, diethyl terephthalate and polythiophenes were utilized as the pendant and the backbone, respectively. The choice of pendant-conducting polymer backbone combination was based on potential match between the two moieties, i.e. the redox reaction of terephthalate pendent groups and the n-doping of polythiophene backbone occur in the same potential region. The resulting CRPs exhibited fast charge transport within the polymer films and low activation energies involved charge propagation through these materials. In the design of these CRPs an unconjugated link between the pendant and the backbone was found to be advantageous in terms of the polymerizability of the monomers and for the preservation of individual redox activity of the pendants and the polymer chain in CRPs. The functionalized materials were specifically designed as anode materials for energy storage applications and, although insufficient cycling stability was observed, the work presented in this thesis demonstrates that the combination of redox active functional groups with conducting polymers, forming CRPs, shows promise for the development of organic matter-based electrical energy storage materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy