SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Njølstad Pål R.) "

Sökning: WFRF:(Njølstad Pål R.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
2.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 55:11, s. 1807-19
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n=65,405), maternal (n=61,228) and paternal (n=52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.
  •  
3.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
4.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of offspring birth weight in 86,577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
  • 2018
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 1460-2083 .- 0964-6906. ; 27:4, s. 742-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) of birth weight have focused on fetal genetics, while relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86,577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5x10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
  •  
5.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n=218,166) and nine studies of children and adolescents (n=19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) =0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio =1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio =1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
6.
  • Laisk, Triin, et al. (författare)
  • The genetic architecture of sporadic and multiple consecutive miscarriage.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Miscarriage is a common, complex trait affecting ~15% of clinically confirmed pregnancies. Here we present the results of large-scale genetic association analyses with 69,054 cases from five different ancestries for sporadic miscarriage, 750 cases of European ancestry for multiple (≥3) consecutive miscarriage, and up to 359,469 female controls. We identify one genome-wide significant association (rs146350366, minor allele frequency (MAF) 1.2%, P=3.2 × 10-8, odds ratio (OR)=1.4) for sporadic miscarriage in our European ancestry meta-analysis and three genome-wide significant associations for multiple consecutive miscarriage (rs7859844, MAF=6.4%, P=1.3 × 10-8, OR=1.7; rs143445068, MAF=0.8%, P=5.2 × 10-9, OR=3.4; rs183453668, MAF=0.5%, P=2.8 × 10-8, OR=3.8). We further investigate the genetic architecture of miscarriage with biobank-scale Mendelian randomization, heritability, and genetic correlation analyses. Our results show that miscarriage etiopathogenesis is partly driven by genetic variation potentially related to placental biology, and illustrate the utility of large-scale biobank data for understanding this pregnancy complication.
  •  
7.
  • Vogelezang, Suzanne, et al. (författare)
  • Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.
  • 2020
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
  •  
8.
  • El Jellas, Khadija, et al. (författare)
  • Two New Mutations in the CEL Gene Causing Diabetes and Hereditary Pancreatitis : How to Correctly Identify MODY8 Cases
  • 2022
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 107:4, s. 1455-1466
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Maturity onset diabetes of the young, type 8 (MODY8) is associated with mutations in the CEL gene, which encodes the digestive enzyme carboxyl ester lipase. Several diabetes cases and families have in recent years been attributed to mutations in CEL without any functional or clinical evidence provided. Objective: To facilitate correct MODY8 diagnostics, we screened 2 cohorts of diabetes patients and delineated the phenotype. Methods: Young, lean Swedish and Finnish patients with a diagnosis of type 2 diabetes (352 cases, 406 controls) were screened for mutations in the CEL gene. We also screened 58 Czech MODY cases who had tested negative for common MODY genes. For CEL mutation-positive subjects, family history was recorded, and clinical investigations and pancreatic imaging performed. Results: Two cases (1 Swedish and 1 Czech) with germline mutation in CEL were identified. Clinical and radiological investigations of these 2 probands and their families revealed dominantly inherited insulin-dependent diabetes, pancreatic exocrine dysfunction, and atrophic pancreas with lipomatosis and cysts. Notably, hereditary pancreatitis was the predominant phenotype in 1 pedigree. Both families carried single-base pair deletions in the proximal part of the CEL variable number of tandem repeat (VNTR) region in exon 11. The mutations are predicted to lead to aberrant protein tails that make the CEL protein susceptible to aggregation. Conclusion: The diagnosis of MODY8 requires a pancreatic exocrine phenotype and a deletion in the CEL VNTR in addition to dominantly inherited diabetes. CEL screening may be warranted also in families with hereditary pancreatitis of unknown genetic etiology.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy