SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nogueiras Rubén) "

Sökning: WFRF:(Nogueiras Rubén)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • López, Miguel, et al. (författare)
  • Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance
  • 2010
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 16:9, s. 1001-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
  •  
2.
  • Martínez-Sánchez, Noelia, et al. (författare)
  • Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance
  • 2017
  • Ingår i: Cell Metabolism. - Cambridge, MA, United States : Cell Press. - 1550-4131 .- 1932-7420. ; 26:1, s. 212-229.e12
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.
  •  
3.
  • Monelli, Erika, et al. (författare)
  • Angiocrine polyamine production regulates adiposity
  • 2022
  • Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 4:3, s. 327-
  • Tidskriftsartikel (refereegranskat)abstract
    • Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid beta-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism. Endothelial cells in white adipose tissue are shown to produce polyamines, which regulate adipocyte lipolysis, thus demonstrating how local angiocrine signals contribute to healthy adipose tissue homeostasis.
  •  
4.
  • Romero-Picó, Amparo, et al. (författare)
  • Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin.
  • 2013
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X. ; 38:7, s. 1296-307
  • Tidskriftsartikel (refereegranskat)abstract
    • The opioid system is well recognized as an important regulator of appetite and energy balance. We now hypothesized that the hypothalamic opioid system might modulate the orexigenic effect of ghrelin. Using pharmacological and gene silencing approaches, we demonstrate that ghrelin utilizes a hypothalamic κ-opioid receptor (KOR) pathway to increase food intake in rats. Pharmacological blockade of KOR decreases the acute orexigenic effect of ghrelin. Inhibition of KOR expression in the hypothalamic arcuate nucleus is sufficient to blunt ghrelin-induced food intake. By contrast, the specific inhibition of KOR expression in the ventral tegmental area does not affect central ghrelin-induced feeding. This new pathway is independent of ghrelin-induced AMP-activated protein kinase activation, but modulates the levels of the transcription factors and orexigenic neuropeptides triggered by ghrelin to finally stimulate feeding. Our novel data implicate hypothalamic KOR signaling in the orexigenic action of ghrelin.
  •  
5.
  • Schriever, Sonja C., et al. (författare)
  • Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity
  • 2020
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 130:11, s. 6093-6108
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies (GWAS) identified DUSP8, encoding a dual-specificity phosphatase targeting mitogen-activated protein kinases, as a type 2 diabetes (T2D) risk gene. Here, we reveal that Dusp8 is a gatekeeper in the hypothalamic control of glucose homeostasis in mice and humans. Male, but not female, Dusp8 loss-of-function mice, either with global or corticotropin-releasing hormone neuron–specific deletion, had impaired systemic glucose tolerance and insulin sensitivity when exposed to high-fat diet (HFD). Mechanistically, we found impaired hypothalamic-pituitary-adrenal axis feedback, blunted sympathetic responsiveness, and chronically elevated corticosterone levels driven by hypothalamic hyperactivation of Jnk signaling. Accordingly, global Jnk1 ablation, AAV-mediated Dusp8 overexpression in the mediobasal hypothalamus, or metyrapone-induced chemical adrenalectomy rescued the impaired glucose homeostasis of obese male Dusp8-KO mice, respectively. The sex-specific role of murine Dusp8 in governing hypothalamic Jnk signaling, insulin sensitivity, and systemic glucose tolerance was consistent with functional MRI data in human volunteers that revealed an association of the DUSP8 rs2334499 risk variant with hypothalamic insulin resistance in men. Further, expression of DUSP8 was increased in the infundibular nucleus of T2D humans. In summary, our findings suggest the GWAS-identified gene Dusp8 as a novel hypothalamic factor that plays a functional role in the etiology of T2D.
  •  
6.
  •  
7.
  • Tovar, Sulay, et al. (författare)
  • Central administration of resistin promotes short-term satiety in rats.
  • 2005
  • Ingår i: European journal of endocrinology / European Federation of Endocrine Societies. - : Oxford University Press (OUP). - 0804-4643. ; 153:3
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Several hormones expressed in white adipose tissue influence food intake at the central level. We sought to determine whether resistin, a circulating adipose-derived hormone in rodents, has actions on the hypothalamus by determining the effects of central resistin injection on food intake and on hypothalamic Fos protein expression. DESIGN: As resistin expression in adipose tissue is influenced by altered nutritional status, we studied the effect of central resistin in both fed and pre-fasted rats. RESULTS: In fasted rats, central injection of resistin decreased food intake acutely and increased the number of cells that express Fos protein in the arcuate nucleus but not in any other hypothalamic structure. The effect on food intake was dose-dependent and did not result in the formation of a conditioned taste aversion. CONCLUSIONS: Taken together, these results provide the first evidence documenting a central action of resistin, which could be involved in a feedback loop targeting the hypothalamus. On the other hand, since we observed resistin mRNA in the arcuate and ventromedial nuclei of the hypothalamus, it is also possible that brain-derived resistin serves as a neuropeptide involved in the regulation of energy homeostasis. However, since resistin-induced satiety was modest and transient, as central administration for several days did not affect body weight, the physiological relevance and therapeutic potential of the observed principal phenomenon may be limited.
  •  
8.
  • Tschöp, Matthias, et al. (författare)
  • Gut hormone-based pharmacology : novel formulations and future possibilities for metabolic disease therapy
  • 2023
  • Ingår i: Diabetologia. - 0012-186X. ; 66:10, s. 1796-1808
  • Forskningsöversikt (refereegranskat)abstract
    • Glucagon-like peptide-1 (GLP-1) receptor agonists are established pharmaceutical therapies for the treatment of type 2 diabetes and obesity. They mimic the action of GLP-1 to reduce glucose levels through stimulation of insulin secretion and inhibition of glucagon secretion. They also reduce body weight by inducing satiety through central actions. The GLP-1 receptor agonists used clinically are based on exendin-4 and native GLP-1 and are available as formulations for daily or weekly s.c. or oral administration. GLP-1 receptor agonism is also achieved by inhibitors of dipeptidyl peptidase-4 (DPP-4), which prevent the inactivation of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), thereby prolonging their raised levels after meal ingestion. Other developments in GLP-1 receptor agonism include the formation of small orally available agonists and compounds with the potential to pharmaceutically stimulate GLP-1 secretion from the gut. In addition, GLP-1/glucagon and GLP-1/GIP dual receptor agonists and GLP-1/GIP/glucagon triple receptor agonists have shown the potential to reduce blood glucose levels and body weight through their effects on islets and peripheral tissues, improving beta cell function and stimulating energy expenditure. This review summarises developments in gut hormone-based therapies and presents the future outlook for their use in type 2 diabetes and obesity. Graphical Abstract: [Figure not available: see fulltext.].
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy