SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Norgren Mari Professor) "

Sökning: WFRF:(Norgren Mari Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Catharina, 1955- (författare)
  • Immunological mechanisms in systemic autoimmunity : autoantibodies and chemokines in systemic lupus erythematosus and during treatment with TNF inhibitors in rheumatoid arthritis
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background. Rheumatoid Arthritis (RA) is an autoimmune inflammatory disease that, without powerful treatment, may lead to irreversible joint damage. During the past decade, anti-cytokine therapy has become available, e.g., infliximab, a chimeric antibody targeting the pro-inflammatory cytokine TNF that has a central role in the inflammatory process in RA patients. Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that may affect all organs and is characterized by a massive antibody production. Chemokines, chemokine receptors and lipoprotein receptor-related protein 1(CD91) are regulators of inflammation in autoimmune diseases and T-cell migration. Objectives. The aim of this study was to get a deeper understanding how TNF blocking treatment influences inflammatory mechanisms and autoantibody formation in RA with special reference to similarities and differences with SLE. Methods. In patients with RA treated with anti-TNF, and in SLE patients (ACR criteria) clinical evaluation was performed and blood samples analyzed. Autoantibodies were analyzed using indirect immunofluorescence, ELISA and multiplex flow cytometry in samples from anti-TNF treated RA patients (n=59) followed longitudinally for 54 weeks, in pre-diseased samples from SLE patients (n=38) and matched population-based controls (n=152). T-cell expression of chemokine receptors and CD91 was analyzed by flow cytometry, whilst serum levels of chemokines were determined using ELISA in anti-TNF treated RA-patients (n=24) followed longitudinally (30 weeks), and cross-sectionally in SLE-patients (n=23). Expression of mRNA for chemokines was analyzed in T-cells from SLE-patients (n=10) using PCR. Results. After treatment with infliximab, RA patients produced ANA, anti-dsDNA and anti-nucleosome antibodies, but not anti-ENA antibodies. Although these antibodies are considered typical for SLE only one patient developed a transient lupus-syndrome. Antibodies against cell nuclear antigens, including ENA, were detected several years before the first clinical symptom of SLE; anti-SSA was the earliest detectable antibody. In RA-patients before infliximab treatment, the T-cell expression of several chemokine receptors was elevated compared with healthy controls. In contrast, only one soluble chemokine, IP-10 was elevated. After treatment the levels of soluble MIP-1β, MCP-1 and IP-10, and the T-cell expression of CCR2 were decreased. In SLE-patients MIP-1β, MCP-1, SDF-1, IP-10 and RANTES in blood were elevated, whilst expression of CXCR5 and CCR6 on T-cells was lower than in healthy controls. T-cell expression of CXCR2 and CCR1 was elevated in active disease (measured as SLEDAI index), whereas the CXCR5 and CCR2 expression was lower in inactive SLE. In SLE patients with nephritis IP-10 was lower and T-cell expression of CXCR3 and CCR3 elevated compared with patients without nephritis. The expression of CD91 was higher on T-cells from patients not responsive to infliximab treatment compared with responders. Conclusion. These findings indicate that anti-TNF (infliximab) treatment in RA-patients has a major impact on the production of autoantibodies and chemokines. The autoantibody profile in infliximab-treated patients was similar to that predating disease onset in SLE patients with the exception of anti-ENA being detectable in SLE, but the development of lupus-syndromes was rare. The expression of CD91 on T-cells may predict responsiveness to infliximab. The expression of chemokine receptors in SLE- patients seemed to be related to disease activity. Anti-nuclear antibodies were detectable years before clinical disease onset in patients who developed SLE suggesting a gradual pathogenic process.
  •  
2.
  • Maripuu, Linda, 1973- (författare)
  • Superantigens in group A streptococcus : gene diversity and humoral immune response
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Group A streptococcus (GAS) is a strictly human pathogen that causes infections ranging from asymptomatic carriage to the highly lethal streptococcal toxic shock syndrome (STSS). GAS are classified according to the sequence of the variable 5’ end of the emm-gene that encodes the surface associated M-protein. In the late 1980s, outbreaks of GAS infections with high rates of STSS were reported in several parts of the world, including Sweden. Superantigens (SAgs), a group of exotoxins, have been described as key mediators of STSS due to their capacity to polyclonally activate T-cells and induce a massive release of inflammatory cytokines. Previous reports have revealed that sera from STSS patients have lower capacity to neutralize this SAg-mediated immune stimulation and a higher prevalence of GAS isolates with specific emm-genotypes during disease outbreaks. The aims of this thesis were to analyse the protective antibody response mounted by the host against SAgs produced by the infecting GAS isolate and to characterise the isolates emm-genotypes and SAg gene profiles. The clinical material examined was collected from patients with STSS, sepsis, erysipelas, or tonsillitis in Sweden between 1986 and 2001. Both acute- and convalescence-phase sera were analyzed, along with the infecting GAS isolates. The 92 clinical GAS isolates examined were found to exhibit a high degree of genetic diversity in terms of the number and identity of their SAg genes. Isolates with a given emm-genotype could be divided into subgroups on the basis of their SAg gene profiles. Ten different SAg gene profiles were identified in the 45 emm1 isolates examined; one of these ten was highly persistent, being observed in 22 isolates collected over 14 years. Two of the 11 known SAg genes in GAS, smeZ-1 and speA, were more prevalent in the emm1 associated profiles than in the SAg gene profiles of isolates with other emm-genotypes. Patients infected by GAS with the emm1-genotype were less likely to produce acute-phase sera that could effectively neutralize the T-cell mitogenicity induced by the infecting isolate’s extracellular products (EP). Sepsis patients whose sera exhibited this lack of neutralizing ability were more prone to developing STSS. Most patients whose acute-phase sera did not effectively neutralize the EP from the infecting isolate lacked protective antibodies in their convalescent-phase sera despite having elevated ELISA titers. The results reported herein show that combining SAg gene profiling with emm-genotyping may be useful for tracking the spread of GAS clones in the community. It was also shown that a lack of neutralizing activity in convalescence-phase sera might be due to an inability of those patients to mount a protective immune response against SAgs produced by the infecting GAS isolate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy