SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Norlin Börje) "

Sökning: WFRF:(Norlin Börje)

  • Resultat 1-10 av 77
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • An, S., et al. (författare)
  • Characterization of micro pore optics for full-field X-ray fluorescence imaging
  • 2023
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Elemental mapping images can be achieved through step scanning imaging using pinhole optics or micro pore optics (MPO), or alternatively by full-field X-ray fluorescence imaging (FF-XRF). X-ray optics for FF-XRF can be manufactured with different micro-channel geometries such as square, hexagonal or circular channels. Each optic geometry creates different imaging artefacts. Square-channel MPOs generate a high intensity central spot due to two reflections via orthogonal channel walls inside a single channel, which is the desirable part for image formation, and two perpendicular lines forming a cross due to reflections in one plane only. Thus, we have studied the performance of a square-channel MPO in an FF-XRF imaging system. The setup consists of a commercially available MPO provided by Photonis and a Timepix3 readout chip with a silicon detector. Imaging of fluorescence from small metal particles has been used to obtain the point spread function (PSF) characteristics. The transmission through MPO channels and variation of the critical reflection angle are characterized by measurements of fluorescence from copper and titanium metal fragments. Since the critical angle of reflection is energy dependent, the cross-arm artefacts will affect the resolution differently for different fluorescence energies. It is possible to identify metal fragments due to the form of the PSF function. The PSF function can be further characterized using a Fourier transform to suppress diffuse background signals in the image.
  •  
2.
  • An, Siwen, et al. (författare)
  • Comparison of Elemental Analysis Techniques for Fly Ash from Municipal Solid Waste Incineration using X-rays and Electron Beams
  • 2019
  • Ingår i: IOP Conference Series. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • With the rapid expansion of the waste incineration business both in Europe and globally, there is a growing need for the elemental analysis for fly ash from municipal solid waste incineration. In this work, samples of washed and unwashed ash from municipal solid waste incineration in Sundsvall are evaluated. Qualitative analysis and semi-quantitative analysis are used to compare two elemental analysis methods, scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) measurement. Both methods are used to retrieve the difference in elemental composition between washed and unwashed fly ash. SEM-EDS accurately detects light elements from well-prepared samples in a vacuum environment, while, for online measurements, XRF is a potential method that analyses hazardous metal content in the fly ash. 
  •  
3.
  • An, Siwen, et al. (författare)
  • Effects of Water Absorption on Mercury Contamination in Fiberbank Sediments using X-ray Fluorescence Spectrometer
  • 2021
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : Institute of Physics (IOP). - 1755-1307 .- 1755-1315.
  • Konferensbidrag (refereegranskat)abstract
    • A large amount of contaminated cellulose and wood fibers were emitted directly onto the seabed by the pulp and paper industry before the year of 1970. This fiber-rich sediment contains concentrations of hazardous substances that cause environmental problems. Mercury (Hg) in the fiber sediment is a worldwide threat because it can bioaccumulate in the aquatic ecosystem and eventually affect human health. X-ray fluorescence (XRF) analysis is anelemental analysis method for earth materials, which is rapid and requires minimal sample preparation. However, for in-situ XRF analyses, constraints in the measurement conditions will strongly affect the measurement sensitivity and accuracy, such as the scattered background and the water content surrounding the sample. In this work, we showed that applying an X-ray beam filter foil, optimized by using the material absorption edge, can improve the sensitivity of the XRF spectrometer system for Hg determination. Furthermore, the influence of water content in XRF measurement for Hg contamination analysis was investigated. The attenuation coefficient in water was determined by simulation of water layer with varying thickness using a Monte Carlo simulation code. The measured intensity for Hg was decreased exponentially asthe water thickness increase, as expected. We propose a method to correct the attenuation in water with XRF analysis and we expect that these findings can contribute to an accurate in-situ Hg detection experiment.
  •  
4.
  • An, Siwen, et al. (författare)
  • Full-field X-ray fluorescence imaging with a straight polycapillary X-ray collimator
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the availability of X-ray imaging detectors, full-field X-ray fluorescence (FF-XRF) imaging technique has become achievable, which provides an alternative to scanning X-ray fluorescence imaging with a micro-focus X-ray beamline. In this paper, we present a setup based on straight capillary optics and an energy-dispersive hybrid pixel detector, which can perform simultaneous mapping of several chemical elements. The photon transmission efficiency and spatial resolution are compared between two X-ray collimation setups: one using pinhole optics and one using straight polycapillary optics. There is a tradeoff between the spatial resolution and transmission efficiency when considering X-ray optics. When optimizing the spatial resolution, using straight capillary optics achieved a higher intensity gain when comparing with the pinhole setup. Characterization of the polycapillary imaging setup is performed through analyzing various samples in order to investigate the spatial frequency response and the energy sensitivity. This developed setup is capable of FF-XRF imaging in characteristic energies below 20 keV, while for higher energies the spatial resolution is affected by photon transmission through the collimator. This work shows the potential of the FF-XRF instrument in the monitoring of toxic metal distributions in environmental mapping measurements.
  •  
5.
  • An, Siwen, et al. (författare)
  • Geometrical influence on Hg determination in wet sediment using K-shell fluorescence analysis
  • 2023
  • Ingår i: X-Ray Spectrometry. - : John Wiley and Sons Ltd. - 0049-8246 .- 1097-4539. ; 52:4, s. 82-196
  • Tidskriftsartikel (refereegranskat)abstract
    • To quickly identify maritime sites polluted by heavy metal contaminants, reductions in the size of instrumentation have made it possible to bring an X-ray fluorescence (XRF) analyzer into the field and in direct contact with various samples. The choice of source-sample-detector geometry plays an important role in minimizing the Compton scattering noise and achieving a better signal-to-noise ratio (SNR) in XRF measurement conditions, especially for analysis of wet sediments. This paper presents the influence of geometrical factors on a prototype, designed for in situ XRF analysis of mercury (Hg) in wet sediments using a 57Co excitation source and an X-ray spectrometer. The unique XRF penetrometer prototype has been constructed and tested for maritime wet sediment. The influence on detection efficiency and SNR of various geometrical arrangements have been investigated using the combination of Monte Carlo simulations and laboratory experiments. Instrument calibration was performed for Hg analysis by means of prepared wet sediments with the XRF prototype. The presented results show that it is possible to detect Hg by K-shell emission, thus enabling XRF analysis for underwater sediments. Consequently, the XRF prototype has the potential to be applied as an environmental screening tool for analysis of polluted sediments with relatively high concentrations (e.g., >2880 ppm for Hg), which would benefit in situ monitoring of maritime pollution caused by heavy metals. © 2022 The Authors
  •  
6.
  • An, Siwen, et al. (författare)
  • Signal-to-Noise Ratio Optimization in X-ray Fluorescence Spectrometry for Chromium Contamination Analysis
  • 2021
  • Ingår i: Talanta. - : Elsevier BV. - 0039-9140 .- 1873-3573. ; 230
  • Tidskriftsartikel (refereegranskat)abstract
    • In most cases, direct X-ray fluorescence (XRF) analysis of solutions entails technical difficulties due to a high X-ray scattering background resulting in a spectrum with a poor signal-to-noise ratio (SNR). Key factors that determine the sensitivity of the method are the energy resolution of the detector and the amount of scattered radiation in the energy range of interest. Limiting the width of the primary spectrum by the use of secondary targets, or filters, can greatly improve the sensitivity for specific portions of the spectrum. This paper demonstrates a potential method for SNR optimization in direct XRF analysis of chromium (Cr) contamination. The suggested method requires minimal sample preparation and achieves higher sensitivity compared to existing direct XRF analysis. Two states of samples, fly ash and leachate from municipal solid waste incineration, were investigated. The effects of filter material, its absorption edge and filter thickness were analyzed using the combination of Monte Carlo N-Particle (MCNP) code and energy-dispersive XRF spectrometry. The applied filter removes primary photons with energies interfering with fluorescence photons from the element of interest, thus results in lower background scattering in the spectrum. The SNR of Cr peak increases with filter thickness and reaches a saturation value when further increased thickness only increases the measurement time. Measurements and simulations show that a Cu filter with a thickness between 100 μm and 140 μm is optimal for detecting Cr by taking into account both the SNR and the exposure time. With direct XRF analysis for solutions, the limit of quantitation (LOQ) of the achieved system was 0.32 mg/L for Cr, which is well below the allowed standard limitation for landfills in Sweden. This work shows that XRF can gain enough sensitivity for direct monitoring to certify that the Cr content in leachate is below environmental limits.
  •  
7.
  • An, Siwen (författare)
  • Spectroscopic and Microscopic X-ray Fluorescence Analysis for Environmental and Industrial Applications
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heavy metals are well-known environmental pollutants due to its potential impact on associated ecosystems and human health. Thus, it is important to monitor the levels of heavy metals in the environment. X-ray fluorescence (XRF) analysis is a powerful and effective screening tool in measuring the concentration of multi-elements simultaneously.This thesis provides insight into development and implementation of XRF instruments for environmental monitoring and industrial process control. The XRF method was compared with a commercial scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) for fly ash samples. Qualitative analysis and semi-quantitative analysis of Na, S, Cl, K and Cd in incineration fly ash were performed with these two similar techniques. One of the challenges of using XRF is the scattering background noise from the primary beam, which decreases the detection limit and the sensitivity of the measurement system. Hence, an X-ray beam filter was chosen to suppress the background noise for a specific element, Cr, in leachate. Numerical simulations and experiments were developed to find the proper filter material and thickness by calculating the X-ray fluorescence intensities and the signal-to-noise ratio. The developed system is capable of online monitoring of Cr levels, to certify that the concentration is below the threshold level in leachate. An XRF prototype was built and calibrated for underwater Hg analysis in maritime wet sediment using a radioisotope source. The presented results show that it is possible to detect Hg by K-shell emission thus enabling XRF analysis for sediment underwater.For non-homogeneous samples, an image revealing the elemental distribution can be achieved by micro-XRF (µ-XRF). XRF mapping of element distributions on a microscopic level was obtained by using scanning XRF microscopy and full-field XRF projection microscopy (FF-XRF). The spatial resolution of the scanning XRF imaging setup using an X-ray tube is in the order of 100 µm, but need to be further improved to measure the homogeneity of S on individual fiber level in pulp and paper industry. For the scanning technique, it is a tradeoff between resolution and measurement time. Another technique is FF-XRF imaging, and a setup was implemented using an energy resolving pixel detector and X-ray optics. The capabilities and limitations of using X-ray optics in XRF imaging systems have been identified. These microscopy measurements can guide further comprehensive environmental and industrial monitoring missions, utilizing elemental distribution information.
  •  
8.
  • An, Siwen (författare)
  • X-ray Fluorescence Spectrometry for Environmental Applications
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heavy metal contamination in environmental applications is particularly important because of its potential impact on associated ecosystems and human health. At present, monitoring of heavy metals is usually done by taking and preparing samples for off-line laboratory measurements. X-ray fluorescence (XRF) analysis is a powerful and widely used tool for determining the elemental composition and concentration of chemical species in materials. This project is a feasibility study for the possibility of on-line XRF systems for continuousand direct analysis of industrial processes and environmental emissions.The feasibility of such measurements depends on the accuracy with which the concentration can be measured within a given response time. Therefore, this project is focused on investigating possible background suppression of the XRF spectrum. First, an XRF setup has been built, and its capability has been compared to a commercial scanning electron microscope with energy dispersive spectroscopy (SEM-EDS). The qualitative analysis and semi-quantitative analysis of heavy metal contamination in fly ash was performed and compared. Due to minimal sample preparation, the developed XRF system is suitable for in-situ measurements. A series of experiments was performed to optimize the signal-to-noise ratio of the spectra achieved from chromium contaminated liquid samples. The most significant factor turned out to be the primary X-ray source filter. Numerical simulation models have been developed in the Monte Carlo N-particle radiation transport code (MCNP), to calculate the X-ray fluorescence intensities and the detection limit for chromium in liquid samples. The experimental results agree with the results predicted by the simulation model, hence the model is used for optimization of the XRF system. Further, XRF mapping of chemical element distributions on a microscopic level has been obtained by using both X-ray scanning microscopy and full-field projection microscopy. The resultingdata from these microscopy measurements can guide further comprehensive environmental and industrial monitoring missions by providing additional spatial distribution information.In conclusion, the first research contribution presented in this thesis is the demonstration of the possibility to perform in-situ XRF measurements of chromium contamination in leachate with a limit of detection below the legal environmental limits. The second is the demonstration of XRF mapping on amicroscopy level, where a polycapillary X-ray optics setup achieves a similar intensity as a geometrically corresponding pinhole optics setup.
  •  
9.
  • Badel, Xavier, et al. (författare)
  • Metallized and oxidized silicon macropore arrays filled with a scintillator for CCD-based X-ray imaging detectors
  • 2004
  • Ingår i: IEEE Transactions on Nuclear Science. - : IEEE. - 0018-9499 .- 1558-1578. ; 51:3, s. 1001-1005, s. 1006-1010
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon charge-coupled devices (CCDs) covered with a scintillating film are now available on the market for use in digital medical imaging. However, these devices could still be improved in terms of sensitivity and especially spatial resolution by coating the CCD with an array of scintillating waveguides. In this paper, such waveguides were fabricated by first etching pores in silicon, then performing metallization or oxidation of the pore walls and finally filling the pores with CsI(TI). The resulting structures were observed using scanning electron microscopy and tested under X-ray exposure. Theoretical efficiencies of macropore arrays filled with CsI(TI) were also calculated, indicating that the optimal pore depth for metallized macropore arrays is about 80 mum while it is around 350 mum for oxidized ones. This result, together with the roughness of the metal coating, explains why lower SNR values were measured with the metallized macropores. Indeed, the macropore arrays had depths in the range of 210-390 mum, which is favorable to oxidized structures.
  •  
10.
  • Badel, Xavier, et al. (författare)
  • Performance of scintillating waveguides for CCD-based X-ray detectors
  • 2006
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 53:1, s. 3-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Scintillating films are usually used to improve the sensitivity of CCD-based X-ray imaging detectors. For an optimal spatial resolution and detection efficiency, a tradeoff has to be made on the film thickness. However, these scintillating layers can also be structured to provide a pixellated screen. In this paper, the study of CsI(TI)-filled pore arrays is reported. The pores are first etched in silicon, then oxidized and finally filled with CsI(TI) to form scintillating waveguides. The dependence of the detector sensitivity on pore depth, varied from 40 to 400 mu m here, follows rather well theoretical predictions. Most of the detectors produced in this work have a detective quantum efficiency of the incoming X-ray photons of about 25%. However, one detector shows that higher efficiency can be achieved approaching almost the theoretical limit set by Poisson statistics of the incoming X-rays. Thus, we conclude that it is possible to fabricate scintillating waveguides with almost ideal performance. Imaging capabilities of the detectors are demonstrated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 77
Typ av publikation
tidskriftsartikel (38)
konferensbidrag (29)
doktorsavhandling (5)
licentiatavhandling (3)
konstnärligt arbete (1)
annan publikation (1)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (57)
övrigt vetenskapligt/konstnärligt (19)
populärvet., debatt m.m. (1)
Författare/redaktör
Fröjdh, Christer (32)
Norlin, Börje, 1967- (31)
An, Siwen (18)
Thungström, Göran (16)
Reza, Salim, 1985- (13)
Nilsson, Hans-Erik (12)
visa fler...
Engstrand, Per, Prof ... (11)
Thim, Jan (9)
Persson, Erik, 1972- (9)
Fröjdh, Christer, 19 ... (8)
Thungström, Göran, 1 ... (8)
Zeeshan, Faisal (8)
Krapohl, David, PhD, ... (7)
Norlin, Börje, assoc ... (7)
Oelmann, Bengt (5)
Abdalla, Suliman (3)
O'Nils, Mattias (3)
O'Shea, V. (2)
Linnros, Jan (2)
Graafsma, Heinz (2)
O'Nils, Mattias, 196 ... (2)
Brenner, Richard (1)
Guo, J. (1)
Stewart, G. (1)
Schyns, E. (1)
Williams, L. (1)
Anton, Gisela (1)
Petersson, Sture (1)
Dubaric, Ervin (1)
de Vries, R (1)
Thörnberg, Benny, 19 ... (1)
Gunnarsson, Mikael (1)
Slavicek, Tomas (1)
Lai, Barry (1)
Mattsson, Sören (1)
Engstrand, Per, 1955 ... (1)
Jornvall, H (1)
Lindgren, Johan (1)
Tryggvason, K (1)
Manuilskiy, Anatoliy (1)
Greiffenberg, Domini ... (1)
Lundgren, Jan (1)
Gustavsson, Ingvar (1)
An, S. (1)
Roudot, R. (1)
Hummelgård, Magnus, ... (1)
González, Charlotte (1)
Rydblom, Stefani Ali ... (1)
Huang, Yuying, Profe ... (1)
Haraldsson, Börje, 1 ... (1)
visa färre...
Lärosäte
Mittuniversitetet (76)
Högskolan i Gävle (15)
Lunds universitet (3)
Kungliga Tekniska Högskolan (2)
RISE (2)
Göteborgs universitet (1)
visa fler...
Karolinska Institutet (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (77)
Forskningsämne (UKÄ/SCB)
Teknik (68)
Naturvetenskap (11)
Medicin och hälsovetenskap (5)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy