SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Norling Karin 1988) "

Sökning: WFRF:(Norling Karin 1988)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernasconi, Valentina, 1989, et al. (författare)
  • A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection
  • 2021
  • Ingår i: Mucosal Immunology. - : Elsevier BV. - 1933-0219 .- 1935-3456. ; 14:2, s. 523-536
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4(+)T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4(+)T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza.
  •  
2.
  • Norling, Karin, 1988, et al. (författare)
  • Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance
  • 2022
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 38:8, s. 2550-2560
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.
  •  
3.
  • Norling, Karin, 1988, et al. (författare)
  • Gel Phase 1,2-Distearoyl-sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro
  • 2019
  • Ingår i: ACS Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 5:11, s. 1867-1878
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3E alpha-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1 beta. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity.
  •  
4.
  • Bernasconi, Valentina, 1989, et al. (författare)
  • Mucosal Vaccine Development Based on Liposome Technology
  • 2016
  • Ingår i: Journal of Immunology Research. - : Hindawi Limited. - 2314-8861 .- 2314-7156.
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination ofmucosal adjuvantswith the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines.
  •  
5.
  • Minelli, Caterina, et al. (författare)
  • Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 14, s. 4690-4704
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.
  •  
6.
  • Norling, Karin, 1988 (författare)
  • Liposomes for mucosal vaccine delivery: physicochemical characterization and biological application
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Liposomes are attractive vaccine carriers due to their potential to act as adjuvants, and to the fact that their composition and characteristics are virtually endlessly customizable. However, the precise physicochemical profile of an ideal carrier liposome for mucosal vaccines is still widely unknown, and how different properties affect key steps in the acquisition of protective immunity remains to be elucidated. Additionally, there is no consensus in the field regarding characterization of vaccine formulations, often with incomplete reporting of properties as a result. The focus of this work is therefore twofold: i) to contribute to a better understanding of how the physicochemical profile of vaccine carrier liposomes impacts the development of protective immunity using models at different levels of complexity, and ii) to improve and simplify the physicochemical characterization of liposomes through development and use of new analytical methods. The work in the first area consists of, firstly, an in vivo characterization of the biological response to vaccine liposomes carrying a vaccine protein and characterized by varying surface hydrophilicity (PEGylation). This study showed that non-PEGylated vaccine liposomes more efficiently induced local cell- and antibody-mediated immune responses, as well as better protection against a lethal virus challenge than both PEGylated liposomes and free vaccine protein. Secondly, in vitro studies focused on how liposome stiffness influences dendritic cells, investigating effects on uptake, antigen presentation and cellular activation. These investigations demonstrated that stiff, gel phase liposomes were able to more efficiently activate dendritic cells and induce significantly higher levels of antigen presentation and co-stimulatory signaling compared to both soft, fluid phase liposomes, and free vaccine protein. The work in the second part comprises two studies: a surface plasmon resonance-based method to characterize the influence on liposome deformation from specific multivalent interactions with supported cell membrane mimics, and a waveguide microscopy technique for characterization of optical properties of individual liposomes. While the latter method might become valuable in the context of quantifying the efficiency of dye labelling of liposomes, the surface plasmon resonance study offered information on how liposome deformation depends on membrane stiffness and ligand-receptor pair density. Taken together, the work presented in this thesis demonstrate the value of multidisciplinary approaches to complex biological and medical challenges.
  •  
7.
  • Norling, Karin, 1988 (författare)
  • Studying the influence of the physicochemical properties of lipid nanoparticles for mucosal vaccine delivery
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lipid-based nanoparticles have attracted attention as promising pharmaceutical carriers. Reports of them having inherent adjuvant properties make them particularly interesting as vaccine vectors; however, the physicochemical profile of an ideal nanoparticle for mucosal vaccine delivery remains unknown. The aim of this thesis work is to contribute a better understanding of the connection between physicochemical properties of lipid nanoparticles used as vaccine carriers and the activation of the immune response at several different levels of complexity. As combined antigen and adjuvant, we used a novel fusion protein comprising the Cholera toxin A1 subunit, combined with either the M2e or Ealpha peptide and a dimer of the D subunit of Staphylococcus aureus protein A. This fusion protein was coupled to liposomes and lipodisks with systematically varied poly(ethylene glycol) (PEG) content, protein load, rigidity and size/shape. Firstly, a detailed characterization of the biological response in vitro and in vivo, in a mouse model, to two types of fusion protein-carrying lipid particles was performed. Compared with the free fusion protein, which is in itself already an effective vaccination compound, the result showed that the non-PEGylated liposomes more efficiently induce both cell- and antibody-mediated immune responses as well as protection against a lethal virus challenge than both free fusion protein and the PEGylated liposomes. Secondly, an in vitro study was performed, focusing on elucidating the effect of the physicochemical properties of the carrier particle on processing, in particular the antigen presentation in major histocompatibility complex class II (MHC II), by dendritic cells. Out of 6 different formulations, which varied with respect to PEGylation, fusion protein load, membrane rigidity, size and shape it was found that only the DSPC-based liposome formulation, the only liposome formulation in gel phase, was able to increase antigen presentation compared to free fusion protein. Additionally, this formulation lead to an increased amount of surface-bound MHC II, indicating that the liposomes themselves might have an immunostimulatory effect, making them a promising candidate for further evaluation as a vaccine carrier with inherent adjuvant properties.
  •  
8.
  • Rupert, Deborah, 1986, et al. (författare)
  • Effective Refractive Index and Lipid Content of Extracellular Vesicles Revealed Using Optical Waveguide Scattering and Fluorescence Microscopy
  • 2018
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 34:29, s. 8522-8531
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are generating a growing interest because of the key roles they play in various biological processes and because of their potential use as biomarkers in clinical diagnostics and as efficient carriers in drug-delivery and gene-therapy applications. Their full exploitation, however, depends critically on the possibility to classify them into different subpopulations, a task that in turn relies on efficient means to identify their unique biomolecular and physical signatures. Because of the large heterogeneity of EV samples, such information remains rather elusive, and there is accordingly a need for new and complementary characterization schemes that can help expand the library of distinct EV features. In this work, we used surface-sensitive waveguide scattering microscopy with single EV resolution to characterize two subsets of similarly sized EVs that were preseparated based on their difference in buoyant density. Unexpectedly, the scattering intensity distribution revealed that the scattering intensity of the high-density (HD) population was on an average a factor of three lower than that of the low-density (LD) population. By further labeling the EV samples with a self-inserting lipid-membrane dye, the scattering and fluorescence intensities from EVs could be simultaneously measured and correlated at the single-particle level. The labeled HD sample exhibited not only lower fluorescence and scattering intensities but also lower effective refractive index (n approximate to 1.35) compared with the LD EVs (n approximate to 1.38), indicating that both the lipid and protein contents were indeed lower in the HD EVs. Although separation in density gradients of similarly sized EVs is usually linked to differences in biomolecular content, we suggest based on these observations that the separation rather reflects the ability of the solute of the gradient to penetrate the lipid membrane enclosing the EVs, that is, the two gradient bands are more likely because of the differences in membrane permeability than to differences in biomolecular content of the EVs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Norling, Karin, 1988 (8)
Höök, Fredrik, 1966 (6)
Bally, Marta, 1981 (5)
Lycke, Nils Y, 1954 (3)
Parveen, Nagma, 1988 (3)
Bernasconi, Valentin ... (3)
visa fler...
Price, David (1)
Edwards, Katarina (1)
Lötvall, Jan, 1956 (1)
Agmo Hernández, Víct ... (1)
Agnarsson, Björn, 19 ... (1)
Mapar, Mokhtar, 1983 (1)
Zhdanov, Vladimir, 1 ... (1)
Sjöberg, Mattias, 19 ... (1)
Ong, Li Ching (1)
Schön, Karin, 1962 (1)
Stevens, Molly M. (1)
Stensson, Anneli, 19 ... (1)
Larson, Göran, 1953 (1)
Potthoff, Annegret (1)
Block, Stephan, 1978 (1)
Holme, Margaret N. (1)
Gribonika, Inta (1)
Burazerovic, Sabina, ... (1)
Rupert, Deborah, 198 ... (1)
Jungnickel, Harald (1)
Luch, Andreas (1)
Lynch, Iseult (1)
Shard, Alexander G. (1)
Minelli, Caterina (1)
Cornelis, Geert (1)
Tuoriniemi, Jani (1)
Gutleb, Arno C (1)
Guignard, Cedric (1)
Gollwitzer, Christia ... (1)
Krumrey, Michael (1)
Faure, Bertrand (1)
Dusinska, Maria (1)
Fitzgerald, Niamh (1)
Roesslein, Matthias (1)
Shelke, Ganesh V, 19 ... (1)
Kim, Jaeseok (1)
Valsami-Jones, Eugen ... (1)
Keller, Arturo A. (1)
Wu, Xiaochun (1)
Bartczak, Dorota (1)
Wywijas, Magdalena (1)
Cuello-Nunez, Susana (1)
Infante, Heidi Goena ... (1)
Deumer, Jerome (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (8)
Göteborgs universitet (4)
Umeå universitet (3)
Uppsala universitet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (6)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy