SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Northcott Paul A.) "

Sökning: WFRF:(Northcott Paul A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexandrov, Ludmil B., et al. (författare)
  • Signatures of mutational processes in human cancer
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7463, s. 415-421
  • Tidskriftsartikel (refereegranskat)abstract
    • All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
  •  
2.
  • Zhukova, Nataliya, et al. (författare)
  • WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma
  • 2014
  • Ingår i: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of gammaH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
  •  
3.
  • Sandén, Emma, et al. (författare)
  • Aberrant immunostaining pattern of the CD24 glycoprotein in clinical samples and experimental models of pediatric medulloblastomas
  • 2015
  • Ingår i: Journal of Neuro-Oncology. - : Springer Science and Business Media LLC. - 0167-594X .- 1573-7373. ; 123:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • The CD24 glycoprotein is a mediator of neuronal proliferation, differentiation and immune suppression in the normal CNS, and a proposed cancer biomarker in multiple peripheral tumor types. We performed a comparative analysis of CD24 gene expression in a large cohort of pediatric and adult brain tumors (n = 813), and further characterized protein expression in tissue sections (n = 39), primary brain tumor cultures (n = 12) and a novel orthotopic group 3 medulloblastoma xenograft model. Increased CD24 gene expression was demonstrated in ependymomas, medulloblastomas, anaplastic astrocytomas and glioblastomas, although medulloblastomas displayed higher expression than all other tumor entities. Preferential expression of CD24 in medulloblastomas was confirmed at protein level by immunostaining and computerized image analysis of cryosections. Morphologies and immunophenotyping of CD24(+) cells in tissue sections tentatively suggested disparate functions in different tumor subsets. Notably, protein staining of medulloblastoma cells was associated with prominent cytoplasmic and membranous granules, enabling rapid and robust identification of medulloblastoma cells in clinical tissue samples, as well as in experimental model systems. In conclusion, our results implicate CD24 as a clinically and experimentally useful medulloblastoma immunomarker. Although our results encourage further functional studies of CD24 as a potential molecular target in subsets of brain tumors, the promiscuous expression of CD24 in vivo highlights the importance of specificity in the future design of such targeted treatment.
  •  
4.
  • Swartling, Fredrik J., et al. (författare)
  • Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC
  • 2012
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 21:5, s. 601-613
  • Tidskriftsartikel (refereegranskat)abstract
    • The proto-oncogene MYCN is mis-expressed in various types of human brain tumors. To clarify how developmental and regional differences influence transformation, we transduced wild-type or mutationally stabilized murine N-myc(T58A) into neural stem cells (NSCs) from perinatal murine cerebellum, brain stem, and forebrain. Transplantation of N-myc(WT) NSCs was insufficient for tumor formation. N-myc(T58A) cerebellar and brain stem NSCs generated medulloblastoma/primitive neuroectodermal tumors, whereas forebrain NSCs developed diffuse glioma. Expression analyses distinguished tumors generated from these different regions, with tumors from embryonic versus postnatal cerebellar NSCs demonstrating Sonic Hedgehog (SHH) dependence and SHH independence, respectively. These differences were regulated in part by the transcription factor SOX9, activated in the SHH subclass of human medulloblastoma. Our results demonstrate context-dependent transformation of NSCs in response to a common oncogenic signal.
  •  
5.
  • Swartling, Fredrik Johansson, et al. (författare)
  • Pleiotropic role for MYCN in medulloblastoma
  • 2010
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 24:10, s. 1059-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Sonic Hedgehog (SHH) signaling drives a minority of MB, correlating with desmoplastic pathology and favorable outcome. The majority, however, arises independently of SHH and displays classic or large cell anaplastic (LCA) pathology and poor prognosis. To identify common signaling abnormalities, we profiled mRNA, demonstrating misexpression of MYCN in the majority of human MB and negligible expression in normal cerebella. We clarified a role in pathogenesis by targeting MYCN (and luciferase) to cerebella of transgenic mice. MYCN-driven MB showed either classic or LCA pathologies, with Shh signaling activated in approximately 5% of tumors, demonstrating that MYCN can drive MB independently of Shh. MB arose at high penetrance, consistent with a role for MYCN in initiation. Tumor burden correlated with bioluminescence, with rare metastatic spread to the leptomeninges, suggesting roles for MYCN in both progression and metastasis. Transient pharmacological down-regulation of MYCN led to both clearance and senescence of tumor cells, and improved survival. Targeted expression of MYCN thus contributes to initiation, progression, and maintenance of MB, suggesting a central role for MYCN in pathogenesis.
  •  
6.
  • Hovestadt, Volker, et al. (författare)
  • Medulloblastomics revisited : biological and clinical insights from thousands of patients
  • 2020
  • Ingår i: Nature Reviews. Cancer. - : NATURE PUBLISHING GROUP. - 1474-175X .- 1474-1768. ; 20:1, s. 42-56
  • Forskningsöversikt (refereegranskat)abstract
    • Medulloblastoma, a malignant brain tumour primarily diagnosed during childhood, has recently been the focus of intensive molecular profiling efforts, profoundly advancing our understanding of biologically and clinically heterogeneous disease subgroups. Genomic, epigenomic, transcriptomic and proteomic landscapes have now been mapped for an unprecedented number of bulk samples from patients with medulloblastoma and, more recently, for single medulloblastoma cells. These efforts have provided pivotal new insights into the diverse molecular mechanisms presumed to drive tumour initiation, maintenance and recurrence across individual subgroups and subtypes. Translational opportunities stemming from this knowledge are continuing to evolve, providing a framework for improved diagnostic and therapeutic interventions. In this Review, we summarize recent advances derived from this continued molecular characterization of medulloblastoma and contextualize this progress towards the deployment of more effective, molecularly informed treatments for affected patients.
  •  
7.
  • Northcott, Paul A, et al. (författare)
  • Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 511:7510, s. 428-428
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy