SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noskov Sergei Yu) "

Sökning: WFRF:(Noskov Sergei Yu)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hiniesto Iñigo, Irene, et al. (författare)
  • Endocannabinoids enhance hKV7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval
  • 2023
  • Ingår i: EBioMedicine. - : ELSEVIER. - 2352-3964. ; 89
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardio-vascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS.Methods We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts.Findings We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. Interpretation We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts.Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
2.
  • Yazdi, Samira, et al. (författare)
  • Identification of PUFA interaction sites on the cardiac potassium channel KCNQ1
  • 2021
  • Ingår i: The Journal of General Physiology. - : ROCKEFELLER UNIV PRESS. - 0022-1295 .- 1540-7748. ; 153:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyunsaturated fatty acids (PUFAs) affect many different ion channels, such as voltage-gated K+, Na+, and Ca2+ channels, as well as ryanodine receptors (Xiao et al., 2001; Hamilton et al., 2003; Oliver et al., 2004; Xiao et al., 2005; Ottosson et al., 2014; Farag et al., 2016; Tian et al., 2016; Liin et al., 2018; Bohannon et al., 2020). However, the molecular mechanisms behind the effects of PUFAs are not completely understood. The identity of PUFAs specific binding pockets remains uncharacterized for many ion channels; therefore, the molecular mechanisms of Polyunsaturated fatty acids (PUFAs), but not saturated fatty acids, modulate ion channels such as the cardiac KCNQ1 channel, although the mechanism is not completely understood. Using both simulations and experiments, we find that PUFAs interact directly with the KCNQ1 channel via two different binding sites: one at the voltage sensor and one at the pore. These two amphiphilic binding pockets stabilize the negatively charged PUFA head group by electrostatic interactions with R218, R221, and K316, while the hydrophobic PUFA tail is selectively stabilized by cassettes of hydrophobic residues. The rigid saturated tail of stearic acid prevents close contacts with KCNQ1. By contrast, the mobile tail of PUFA linoleic acid can be accommodated in the crevice of the hydrophobic cassette, a defining feature of PUFA selectivity in KCNQ1. In addition, we identify Y268 as a critical PUFA anchor point underlying fatty acid selectivity. Combined, this study provides molecular models of direct interactions between PUFAs and KCNQ1 and identifies selectivity mechanisms. Long term, this understanding may open new avenues for drug development based on PUFA mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy