SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Novak Kamil) "

Sökning: WFRF:(Novak Kamil)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ademuyiwa, Adesoji O., et al. (författare)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  •  
3.
  • Krizek, Filip, et al. (författare)
  • Atomically sharp domain walls in an antiferromagnet
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field–insensitive neuromorphic functionalities.
  •  
4.
  • Polzer, Stanislav, et al. (författare)
  • Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms
  • 2020
  • Ingår i: Journal of Vascular Surgery. - : MOSBY-ELSEVIER. - 0741-5214 .- 1097-6809. ; 71:2, s. 617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Several studies of biomechanical rupture risk assessment (BRRA) showed its advantage over the diameter criterion in rupture risk assessment of abdominal aortic aneurysm (AAA). However, BRRA studies have not investigated the predictability of biomechanical risk indices at different time points ahead of rupture, nor have they been performed blinded for biomechanical analysts. The objective of this study was to test the predictability of the BRRA method against diameter-based risk indices in a quasi-prospective patient cohort study.Methods: In total, 12 women and 31 men with intact AAAs at baseline have been selected retrospectively at two medical centers. Within 56 months, 19 cases ruptured, whereas 24 cases remained intact within 2 to 56 months. This outcome was kept confidential until all biomechanical activities in this study were finished. The biomechanical AAA rupture risk was calculated at baseline using high-fidelity and low-fidelity finite element method models. The capability of biomechanics-based and diameter-based risk indices to predict the known outcomes at 1 month, 3 months, 6 months, 9 months, and 12 months after baseline was validated. Besides common cohort statistics, the area under the curve (AUC) of receiver operating characteristic curves has been used to grade the different rupture risk indices.Results: Up to 9 months ahead of rupture, the receiver operating characteristic analysis of biomechanics-based risk indices showed a higher AUC than diameter-based indices. Six months ahead of rupture, the largest difference was observed with an AUC of 0.878 for the high-fidelity biomechanical risk index, 0.859 for the low-fidelity biomechanical risk index, 0.789 for the diameter, and 0.821 for the sex-adjusted diameter. In predictions beyond 9 months, none of the risk indices proved to be superior.Conclusions: High-fidelity biomechanical modeling improves the predictability of AAA rupture. Asymptomatic AAA patients with high biomechanical AAA rupture risk indices have an increased risk of rupture. Integrating biomechanics-based diagnostic indices may significantly decrease the false-positive rate in AAA treatment.
  •  
5.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy