SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nowik Patrik) "

Sökning: WFRF:(Nowik Patrik)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nowik, Patrik (författare)
  • Optimizing computed tomography : quality assurance, radiation dose and contrast media
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Computed tomography (CT) is an important modality in radiology; it enables imaging of the inside of patients without superimposed anatomy. The radiation dose and quality of a CT image are highly dependent on the CT scanner, the scan settings and, if applicable, the timing and dosage of the intravenous contrast media (CM). The aim of this Thesis was to develop tools and insights that help maximize the value of examinations for patients undergoing CT and to reduce its cost in terms of radiation and CM dose. The Thesis consists of five studies. The first paper was on quality control (QC) of CT, which is the foundation for a radiology clinic: it provides trust that the equipment functions as expected. A new method of performing routine QCs was proposed where the concept of key performance indicators (KPI) was introduced, together with a semi-automatic process allowing for daily QCs. During the time of the study, multiple deviations were discovered that would have been difficult to detect using traditional QCs. Performing QCs more frequently facilitates more extensive trend analysis. The second paper was on automatic tube current modulation (ATCM). A phantom and a method for the characterization of ATCM were developed. These allowed for a characterization of CT scanners from the four main CT vendors in Sweden, summarized in four extensive tables showing how the ATCM responds to changes in scan parameters. More specifically, the tables present how changes in scan settings of the localizer radiograph (LR), scan settings of the acquisition, reconstruction parameters and patient miscentering affect the ATCM. The third paper was on radiation dose estimation uncertainties coupled to the patient table. In most commercial radiation dose estimation software packages for CT, the patient table is not included. That effect was previously unknown but could be shown using Monte Carlo (MC) calculations of CT scans performed with and without the patient table. It was shown that by not including the effect from the patient table in radiation dose estimations, the radiation doses are overestimated by 5% to 23%, depending on the scan mode. The fourth paper evaluated whether the standard LR can be replaced by a low-dose spiral scan, a so-called synthetic LR (SLR). Such an SLR can potentially improve ATCM, CM dosage and CT planning. Radiation doses were estimated using MC, the image quality was compared in a prospective study of ten patients and the impact of miscentering was investigated with a phantom measurement of water equivalent diameters. It was shown that the radiation doses and the image quality of SLR and LRs were similar. Estimated water equivalent diameters were more consistent when calculated from the low-dose spiral scan compared to the LRs. It was concluded that it is feasible to replace the traditional LR with an SLR for CT scan planning. The fifth paper was a continued investigation of the low-dose spiral scan, but with focus on intravenous CM dosage planning. Altogether, 238 patients who had undergone PET/CT and ii for whom body metrics (height and weight) had been acquired were retrospectively analyzed, the CT number enhancement of the liver was measured, and body volumes of muscle and fat were calculated using the attenuation correction CT (low-dose spiral scan). Multiple linear regressions showed that for CM dose planning, the body volumes of muscle and fat are better to use than body weight. However, the adjusted R2 values of all the investigated models were low, indicating that responses to CM dosage are complex and require more research. In this PhD Thesis, tools and insights were developed to improve the imaging stability of the CT scan by developing semi-automatic QC protocols and techniques to better estimate patient size and shape potentially reducing variation in image quality, radiation dose and CM enhancement among patients.
  •  
2.
  • Nowik, Patrik, et al. (författare)
  • The dosimetric impact of including the patient table in CT dose estimates
  • 2017
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 62:23, s. 538-547
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5 % compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8 %. Effective doses from SPR acquired with the X-ray tube stationary at 6 o'clock (posterior-anterior) were overestimated by 14-23 % when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15 %. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.
  •  
3.
  • Omar, Artur, et al. (författare)
  • Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures
  • 2014
  • Ingår i: Medical Imaging 2014. - : SPIE - International Society for Optical Engineering. - 9780819498267
  • Konferensbidrag (refereegranskat)abstract
    • Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination. 
  •  
4.
  • Persson, Mats, 1987-, et al. (författare)
  • Upper limits of the photon fluence rate on CT detectors : case study on a commercial scanner
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Purpose: The highest photon fluence rate that a CT detector must be able to measure is animportant parameter. We calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest and abdomen protocols.Method: We scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube currentapplied with the tube current modulation (TCM) system. By rescaling this tube current usingpublished measurements on the tube current modulation of a GE scanner we could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gatedchest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, wesimulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner andcalculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentilesof the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated.Results: The highest transmitted fluence rates on the detector for the AAPM reference protocolswith centered patients are found for head and chest images of small patients, with a maximumof 7.1 · 107 mm−2 s−1 for head and 9.6 · 107 mm−2 s−1 for chest. Miscentering the head by 50 mm downwards increases the maximum transmitted fluence rate to 3.9 · 108 mm−2 s−1 . The ECG gatedchest protocol gives fluence rates up to 2.3 · 108 − 2.4 · 108 mm−2 s−1 depending on miscentering.Conclusion: The fluence rate on a CT detector reaches 1 · 108 − 4 · 108 mm−2 s−1 in standardimaging protocols, with the highest rates occurring for ECG gated chest and miscentered headscans. These results will be useful to developers of CT detectors, in particular photon countingdetectors.
  •  
5.
  • Persson, Mats, 1987-, et al. (författare)
  • Upper limits of the photon fluence rate on CT detectors : Case study on a commercial scanner
  • 2016
  • Ingår i: Medical physics (Lancaster). - : AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS. - 0094-2405. ; 43:7, s. 4398-4411
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The highest photon fluence rate that a computed tomography (CT) detector must be able to measure is an important parameter. The authors calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest, and abdomen protocols. Methods: The authors scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube current applied with the tube current modulation (TCM) system. By rescaling this tube current using published measurements on the tube current modulation of a GE scanner [N. Keat, "CT scanner automatic exposure control systems," MHRA Evaluation Report 05016, ImPACT, London, UK, 2005], the authors could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gated chest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, the authors simulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner and calculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentiles of the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated. Results: The highest transmitted fluence rates on the detector for the AAPM reference protocols with centered patients are found for head images and for intermediate-sized chest images, both with a maximum of 3.4 . 10(8) mm(-2) s-1, at 949 mm distance from the source. Miscentering the head by 50 mm downward increases the maximum transmitted fluence rate to 5.7 . 10(8) mm(-2) s(-1). The ECG gated chest protocol gives fluence rates up to 2.3 . 10(8)-3.6 . 10(8) mm(-2) s(-1) depending on miscentering. Conclusions: The fluence rate on a CT detector reaches 3 . 10(8)-6 . 10(8) mm(-2) s(-1) in standard imaging protocols, with the highest rates occurring for ECG gated chest and miscentered head scans. These results will be useful to developers of CT detectors, in particular photon counting detectors. (C) 2016 American Association of Physicists in Medicine.
  •  
6.
  • Ödén, Jakob, et al. (författare)
  • Technical Note : On the calculation of stopping-power ratio for stoichiometric calibration in proton therapy
  • 2015
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 42:9, s. 5252-5257
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simple Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni's or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2) simple Bragg additivity can be reasonably assumed for compound materials; (3) if simple Bragg additivity is assumed, then the I-value for water should be calculated in a consistent manner to that of the tissue of interest (rather than using an experimentally derived value); (4) the ICRU Report 37 I-values may provide a better agreement with experiment than Janni's tables.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy