SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nowzari Ali) "

Sökning: WFRF:(Nowzari Ali)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Nowzari, Ali, et al. (författare)
  • A Comparative Study of Absorption in Vertically and Laterally Oriented InP Core–Shell Nanowire Photovoltaic Devices
  • 2015
  • Ingår i: Nano letters (Print). - Washington : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 15:3, s. 1809-1814
  • Tidskriftsartikel (refereegranskat)abstract
    • We have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch. Electromagnetic modeling of the structures confirmed the experimental observations and showed that the absorption in a vertical nanowire in an array depends strongly on the array pitch. The modeling demonstrated that, depending on the array pitch, absorption in a vertical nanowire can be lower or higher than that in a lateral nanowire with equal absorption predicted at a pitch of 510 nm for our nanowire geometry. The technology described in this Letter facilitates quantitative comparison of absorption in laterally and vertically oriented core-shell nanowire p-i-n junctions and can aid in the design, optimization, and performance evaluation of nanowire-based core-shell photovoltaic devices. © 2014 American Chemical Society.
  •  
3.
  • Berg, Alexander, et al. (författare)
  • Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System
  • 2016
  • Ingår i: Nano letters (Print). - Washington, DC : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 16:1, s. 656-662
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum. © 2015 American Chemical Society.
  •  
4.
  • Bi, Zhaoxia, et al. (författare)
  • InGaN Platelets : Synthesis and Applications toward Green and Red Light-Emitting Diodes
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society. - 1530-6984 .- 1530-6992. ; 19:5, s. 2832-2839
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present a method to synthesize arrays of hexagonal InGaN submicrometer platelets with a top c-plane area having an extension of a few hundred nanometers by selective area metal-organic vapor-phase epitaxy. The InGaN platelets were made by in situ annealing of InGaN pyramids, whereby InGaN from the pyramid apex was thermally etched away, leaving a c-plane surface, while the inclined {101Ì1} planes of the pyramids were intact. The as-formed c-planes, which are rough with islands of a few tens of nanometers, can be flattened with InGaN regrowth, showing single bilayer steps and high-quality optical properties (full width at half-maximum of photoluminescence at room temperature: 107 meV for In 0.09 Ga 0.91 N and 151 meV for In 0.18 Ga 0.82 N). Such platelets offer surfaces having relaxed lattice constants, thus enabling shifting the quantum well emission from blue (as when grown on GaN) to green and red. For single InGaN quantum wells grown on the c-plane of such InGaN platelets, a sharp interface between the quantum well and the barriers was observed. The emission energy from the quantum well, grown under the same conditions, was shifted from 2.17 eV on In 0.09 Ga 0.91 N platelets to 1.95 eV on In 0.18 Ga 0.82 N platelets as a result of a thicker quantum well and a reduced indium pulling effect on In 0.18 Ga 0.82 N platelets. On the basis of this method, prototype light-emitting diodes were demonstrated with green emission on In 0.09 Ga 0.91 N platelets and red emission on In 0.18 Ga 0.82 N platelets.
  •  
5.
  • Jain, Vishal, et al. (författare)
  • Bias-dependent spectral tuning in InP nanowire-based photodetectors
  • 2017
  • Ingår i: Nanotechnology. - Bristol : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiO x wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.
  •  
6.
  • Jain, Vishal, et al. (författare)
  • InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors
  • 2017
  • Ingår i: ACS Photonics. - Washington : American Chemical Society (ACS). - 2330-4022. ; 4:11, s. 2693-2698
  • Tidskriftsartikel (refereegranskat)abstract
    • Avalanche photodetectors (APDs) are key components in optical communication systems due to their increased photocurrent gain and short response time as compared to conventional photodetectors. A detector design where the multiplication region is implemented in a large band gap material is desired to avoid detrimental Zener tunneling leakage currents, a concern otherwise in smaller band gap materials required for absorption at 1.3/1.55 μm. Self-assembled III-V semiconductor nanowires offer key advantages such as enhanced absorption due to optical resonance effects, strain-relaxed heterostructures, and compatibility with mainstream silicon technology. Here, we present electrical and optical characteristics of single InP and InP/InAsP nanowire APD structures. Temperature-dependent breakdown characteristics of p+-n-n+ InP nanowire devices were investigated first. A clear trap-induced shift in breakdown voltage was inferred from I-V measurements. An improved contact formation to the p+-InP segment was observed upon annealing, and its effect on breakdown characteristics was investigated. The band gap in the absorption region was subsequently varied from pure InP to InAsP to realize spatially separate absorption and multiplication APDs in heterostructure nanowires. In contrast to the homojunction APDs, no trap-induced shifts were observed for the heterostructure APDs. A gain of 12 was demonstrated for selective optical excitation of the InAsP segment. Additional electron-beam-induced current measurements were carried out to investigate the effect of local excitation along the nanowire on the I-V characteristics. Simulated band profiles and electric field distributions support our interpretation of the experiments. Our results provide important insight for optimization of avalanche photodetector devices based on III-V nanowires.
  •  
7.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.
  •  
8.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large area photodetectors based on InP NWs with InAs/InAsP QWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.
  •  
9.
  • Jain, Vishal, et al. (författare)
  • Study of photocurrent generation in InP nanowire-based p(+)-i-n(+) photodetectors
  • 2014
  • Ingår i: Nano Reseach. - Beijing & Berlin/Heidelberg : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 7:4, s. 544-552
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on electrical and optical properties of p(+)-i-n(+)photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p(+)-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p(+)-segment length. Without a p(+)-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p(+)-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.
  •  
10.
  • Karimi, Mohammad, 1988-, et al. (författare)
  • Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared
  • 2018
  • Ingår i: Nano letters (Print). - Washington : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 18:1, s. 365-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowires have great potential for realizing broadband photodetectors monolithically integrated with silicon. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible, and near-infrared regions. Here, we report on the first intersubband nanowire heterostructure array photodetectors exhibiting a spectrally resolved photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3 to 20 μm is enabled by intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The intriguing optical characteristics, including unexpected sensitivity to normal incident radiation, are explained by excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed and how engineered nanowire heterostructures open up new, fascinating opportunities for optoelectronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (12)
konferensbidrag (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Nowzari, Ali (13)
Samuelson, Lars (12)
Heurlin, Magnus (7)
Jain, Vishal, 1989- (6)
Pettersson, Håkan, 1 ... (5)
Borgström, Magnus T. (5)
visa fler...
Capasso, Federico (5)
Borgström, Magnus (4)
Gustafsson, Anders (4)
Pettersson, Håkan (3)
Berg, Alexander (3)
Lindgren, David (3)
Mikkelsen, Anders (3)
Storm, Kristian (3)
Bi, Zhaoxia (3)
Dzhigaev, Dmitry (2)
Wallentin, Jesper (2)
Karimi, Mohammad (2)
Kim, Young Yong (2)
Vartanyants, Ivan A. (2)
Sprung, Michael (2)
Lenrick, Filip (2)
Graczyk, Mariusz (1)
Wallenberg, Reine (1)
Aghaeipour, Mahtab (1)
Anttu, Nicklas (1)
Nylund, Gustav (1)
Bidkhori, Gholamreza (1)
Schreiber, Falk (1)
Wagner, Jakob B. (1)
Gelisio, Luca (1)
Zeng, Xulu (1)
Asoli, Damir (1)
Monemar, Bo (1)
Messing, Maria (1)
Asadi, Sahar (1)
Stehr, Jan Eric (1)
Khubbutdinov, Ruslan (1)
Rose, Max (1)
Timm, Rainer (1)
Buyanova, Irina (1)
Barrigón, Enrique (1)
Vainorius, Neimantas (1)
Yazdi, Sadegh (1)
Hultin, Olof (1)
Colvin, Jovana (1)
Lu, Taiping (1)
Ohlsson, Jonas (1)
Narimani, Zahra (1)
Hosseini Ashtiani, S ... (1)
visa färre...
Lärosäte
Lunds universitet (11)
Högskolan i Halmstad (9)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
visa fler...
RISE (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Teknik (11)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy