SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nugroho Ferry 1986) "

Sökning: WFRF:(Nugroho Ferry 1986)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diaz de Zerio Mendaza, Amaia, 1986, et al. (författare)
  • A Fullerene Alloy Based Photovoltaic Blend with a Glass Transition Temperature above 200 °C
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 5:8, s. 4156-4162
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic solar cells with a high degree of thermal stability require bulk-heterojunction blends that feature a high glass transition, which must occur considerably above the temperatures encountered during device fabrication and operation. Here, we demonstrate for the first time a polymer : fullerene blend with a glass transition temperature above 200 °C, which we determine by plasmonic nanospectroscopy. We achieve this strong tendency for glass formation through the use of an alloy of neat, unsubstituted C60 and C70, which we combine with the fluorothieno-benzodithiophene copolymer PTB7. A stable photovoltaic performance of PTB7 : C60 : C70 ternary blends is preserved despite annealing the active layer at up to 180 °C, which coincides with the onset of the glass transition. Rapid deterioration of the power conversion efficiency from initially above 5% only occurs upon exceeding the glass transition temperature of 224 °C of the ternary blend.
  •  
2.
  • Hultmark, Sandra, 1994, et al. (författare)
  • Suppressing Co-Crystallization of Halogenated Non-Fullerene Acceptors for Thermally Stable Ternary Solar Cells
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 30:48
  • Tidskriftsartikel (refereegranskat)abstract
    • While photovoltaic blends based on non-fullerene acceptors are touted for their thermal stability, this type of acceptor tends to crystallize, which can result in a gradual decrease in photovoltaic performance and affects the reproducibility of the devices. Two halogenated indacenodithienothiophene-based acceptors that readily co-crystallize upon mixing are studied, which indicates that the use of an acceptor mixture alone does not guarantee the formation of a disordered mixture. The addition of the donor polymer to the acceptor mixture readily suppresses the crystallization, which results in a fine-grained ternary blend with nanometer-sized domains that do not coarsen due to a high Tg ≈ 200 °C. As a result, annealing at temperatures of up to 170 °C does not markedly affect the photovoltaic performance of ternary devices, in contrast to binary devices that suffer from acceptor crystallization in the active layer. The results indicate that the ternary approach enables the use of high-temperature processing protocols, which are needed for upscaling and high-throughput fabrication of organic solar cells. Further, ternary devices display a stable photovoltaic performance at 130 °C for at least 205 h, which indicates that the use of acceptor mixtures allows to fabricate devices with excellent thermal stability.
  •  
3.
  • Nugroho, Ferry, 1986, et al. (författare)
  • Plasmonic Nanospectroscopy for Thermal Analysis of Organic Semiconductor Thin Films
  • 2017
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 89:4, s. 2575-2582
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic semiconductors are key materials for the next generation of thin film electronic devices like field-effect transistors, light-emitting diodes and solar cells. Accurate thermal analysis is essential for the fundamental understanding of these materials, for device design, stability studies and quality control because desired nanostructures are often far from thermodynamic equilibrium and therefore tend to evolve with time and temperature. However, classical experimental techniques are insufficient because the active layer of most organoelectronic device architectures is typically only on the order of hundred nanometers or less. Scrutinizing the thermal properties in this size range is, however, critical because strong deviations of the thermal properties from bulk values due to confinement effects, and due to pronounced influence of the substrate become significant. Here, we introduce plasmonic nanospectroscopy as an experimental approach to scrutinize the thickness dependence of the thermal stability of semi-crystalline, liquid-crystalline and glassy organic semiconductor thin films down to the sub-100 nm film thickness regime. As the main result we find a pronounced thickness dependence of the glass transition temperature of ternary polymer:fullerene blend thin films, and their constituents, which can be resolved with exceptional precision by the plasmonic nanospectroscopy method, that relies on remarkably simple instrumentation.
  •  
4.
  • Yu, Liyang, 1986, et al. (författare)
  • Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 American Chemical Society. Organic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature Tg of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high Tg of ∼180 °C. Nanoscopic crystallites of a low-temperature polymorph are able to form through a diffusion-limited crystallization process. The resulting fine-grained nanostructure does not evolve further with time and hence is characterized by a high degree of thermal stability. Instead, above Tg, the low temperature polymorph melts, and micrometer-sized crystals of a high-temperature polymorph develop, enabled by more rapid diffusion and hence long-range mass transport. This leads to the same detrimental decrease in photovoltaic performance that is known to occur also in the case of fullerene-based blends. Besides explaining the superior thermal stability of non-fullerene blends at relatively high temperatures, our work introduces a new rationale for the design of bulk heterojunctions that is not based on the selection of high-Tg materials per se but diffusion-limited crystallization. The planar structure of ITIC and potentially other non-fullerene acceptors readily facilitates the desired glass-crystal transition, which constitutes a significant advantage over fullerenes, and may pave the way for truly stable organic solar cells.
  •  
5.
  • Alekseeva, Svetlana, 1987, et al. (författare)
  • Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Grain boundaries separate crystallites in solids and influence material properties, as widely documented for bulk materials. In nanomaterials, however, investigations of grain boundaries are very challenging and just beginning. Here, we report the systematic mapping of the role of grain boundaries in the hydrogenation phase transformation in individual Pd nanoparticles. Employing multichannel single-particle plasmonic nanospectroscopy, we observe large variation in particle-specific hydride-formation pressure, which is absent in hydride decomposition. Transmission Kikuchi diffraction suggests direct correlation between length and type of grain boundaries and hydride-formation pressure. This correlation is consistent with tensile lattice strain induced by hydrogen localized near grain boundaries as the dominant factor controlling the phase transition during hydrogen absorption. In contrast, such correlation is absent for hydride decomposition, suggesting a different phase-transition pathway. In a wider context, our experimental setup represents a powerful platform to unravel microstructure-function correlations at the individual-nanoparticle level.
  •  
6.
  • Bannenberg, Lars J., et al. (författare)
  • Direct Comparison of PdAu Alloy Thin Films and Nanoparticles upon Hydrogen Exposure
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11:17, s. 15489-15497
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructured metal hydrides are able to efficiently detect hydrogen in optical sensors. In the literature, two nanostructured systems based on metal hydrides have been proposed for this purpose each with its own detection principle: continuous sub-100 nm thin films read out via optical reflectance/transmittance changes and nanoparticle arrays for which the detection relies on localized surface plasmon resonance. Despite their apparent similarities, their optical and structural response to hydrogen has never been directly compared. In response, for the case of Pd 1-y Au y (y = 0.15-0.30) alloys, we directly compare these two systems and establish that they are distinctively different. We show that the dissimilar optical response is not caused by the different optical readout principles but results from a fundamentally different structural response to hydrogen due to the different nanostructurings. The measurements empirically suggest that these differences cannot be fully accounted by surface effects but that the nature of the film-substrate interaction plays an important role and affects both the hydrogen solubility and the metal-to-metal hydride transition. In a broader perspective, our results establish that the specifics of nanoconfinement dictate the structural properties of metal hydrides, which in turn control the properties of nanostructured devices including the sensing characteristics of optical hydrogen sensors and hydride-based active plasmonic systems.
  •  
7.
  • Darmadi, Iwan, 1990, et al. (författare)
  • Bulk-Processed Pd Nanocube-Poly(methyl methacrylate) Nanocomposites as Plasmonic Plastics for Hydrogen Sensing
  • 2020
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 3:8, s. 8438-8445
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoplasmonic hydrogen sensors are predicted to play a key role in safety systems of the emerging hydrogen economy. Pd nanoparticles are the active material of choice for sensor prototype development due to their ability to form a hydride at ambient conditions, which creates the optical contrast. Here, we introduce plasmonic hydrogen sensors made from a thermoplastic nanocomposite material, that is, a bulk material that can be molded with standard plastic processing techniques, such as extrusion and three-dimensional (3D) printing, while at the same time being functionalized at the nanoscale. Specifically, our plasmonic plastic is composed of hydrogensensitive and plasmonically active Pd nanocubes mixed with a poly(methyl methacrylate) matrix, and we optimize it by characterization from the atomic to the macroscopic level. We demonstrate meltprocessed deactivation-resistant plasmonic hydrogen sensors, which retain full functionality even after SO weeks. From a wider perspective, we advertise plasmonic plastic nanocomposite materials for application in a multitude of active plasmonic technologies since they provide efficient scalable processing and almost endless functional material design opportunities via tailored polymer- colloidal nanocrystal combinations.
  •  
8.
  • Darmadi, Iwan, 1990, et al. (författare)
  • High-Performance Nanostructured Palladium-Based Hydrogen Sensors - Current Limitations and Strategies for Their Mitigation
  • 2020
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 5:11, s. 3306-3327
  • Forskningsöversikt (refereegranskat)abstract
    • Hydrogen gas is rapidly approaching a global breakthrough as a carbon-free energy vector. In such a hydrogen economy, safety sensors for hydrogen leak detection will be an indispensable element along the entire value chain, from the site of hydrogen production to the point of consumption, due to the high flammability of hydrogen-air mixtures. To stimulate and guide the development of such sensors, industrial and governmental stakeholders have defined sets of strict performance targets, which are yet to be entirely fulfilled. In this Perspective, we summarize recent efforts and discuss research strategies for the development of hydrogen sensors that aim at meeting the set performance goals. In the first part, we describe the state-of-the-art for fast and selective hydrogen sensors at the research level, and we identify nanostructured Pd transducer materials as the common denominator in the best performing solutions. As a consequence, in the second part, we introduce the fundamentals of the Pd-hydrogen interaction to lay the foundation for a detailed discussion of key strategies and Pd-based material design rules necessary for the development of next generation high-performance nanostructured Pd-based hydrogen sensors that are on par with even the most stringent and challenging performance targets.
  •  
9.
  • Darmadi, Iwan, 1990, et al. (författare)
  • Rationally Designed PdAuCu Ternary Alloy Nanoparticles for Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensing
  • 2019
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 4:5, s. 1424-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen sensors are a prerequisite for the implementation of a hydrogen economy due to the high flammability of hydrogen-air mixtures. They are to comply with the increasingly stringent requirements set by stakeholders, such as the automotive industry and manufacturers of hydrogen safety systems, where sensor deactivation is a severe but widely unaddressed problem. In response, we report intrinsically deactivation-resistant nanoplasmonic hydrogen sensors enabled by a rationally designed ternary PdAuCu alloy nanomaterial, which combines the identified best intrinsic attributes of the constituent binary Pd alloys. This way, we achieve extraordinary hydrogen sensing metrics in synthetic air and poisoning gas background, simulating real application conditions. Specifically, we find a detection limit in the low ppm range, hysteresis-free response over 5 orders of magnitude hydrogen pressure, subsecond response time at room temperature, long-term stability, and, as the key, excellent resistance to deactivating species like carbon monoxide, notably without application of any protective coatings. This constitutes an important step forward for optical hydrogen sensor technology, as it enables application under demanding conditions and provides a blueprint for further material and performance optimization by combining and concerting intrinsic material assets in multicomponent nanoparticles. In a wider context, our findings highlight the potential of rational materials design through alloying of multiple elements for gas sensor development, as well as the potential of engineered metal alloy nanoparticles in nanoplasmonics and catalysis.
  •  
10.
  • Firdaus, Yuliar, et al. (författare)
  • Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:3, s. 1164-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiency (PCE) of tandem organic photovoltaics (OPVs) is currently limited by the lack of suitable wide-bandgap materials for the front-cell. Here, two new acceptor molecules, namely IDTA and IDTTA, with optical bandgaps (Eoptg) of 1.90 and 1.75 eV, respectively, are synthesized and studied for application in OPVs. When PBDB-T is used as the donor polymer, single-junction cells with PCE of 7.4%, for IDTA, and 10.8%, for IDTTA, are demonstrated. The latter value is the highest PCE reported to date for wide-bandgap (Eoptg ≥ 1.7 eV) bulk-heterojunction OPV cells. The higher carrier mobility in IDTTA-based cells leads to improved charge extraction and higher fill-factor than IDTA-based devices. Moreover, IDTTA-based OPVs show significantly improved shelf-lifetime and thermal stability, both critical for any practical applications. With the aid of optical-electrical device modelling, we combined PBDB-T:IDTTA, as the front-cell, with PTB7-Th:IEICO-4F, as the back-cell, to realize tandem OPVs with open circuit voltage of 1.66 V, short circuit current of 13.6 mA cm-2 and a PCE of 15%; in excellent agreement with our theoretical predictions. The work highlights IDTTA as a promising wide-bandgap acceptor for high-performance tandem OPVs. © 2019 The Royal Society of Chemistry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (24)
konferensbidrag (4)
doktorsavhandling (1)
forskningsöversikt (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Nugroho, Ferry, 1986 (31)
Langhammer, Christop ... (29)
Wagner, Jakob B. (8)
Antosiewicz, Tomasz, ... (7)
Müller, Christian, 1 ... (5)
Zhdanov, Vladimir, 1 ... (5)
visa fler...
Iandolo, Beniamino, ... (5)
Wadell, Carl, 1985 (5)
Nilsson, Sara, 1990 (4)
Moth-Poulsen, Kasper ... (3)
Hultmark, Sandra, 19 ... (2)
Tiburski, Christophe ... (2)
Syrenova, Svetlana, ... (2)
Fritzsche, Joachim, ... (2)
Schreuders, Herman (2)
Bannenberg, Lars J. (2)
Xu, C. (1)
Inganäs, Olle (1)
Sharma, A (1)
Hedin, Niklas (1)
Liu, Feng (1)
Heeney, Martin (1)
Hellman, Anders, 197 ... (1)
Persson, M (1)
Zhang, Fengling, 196 ... (1)
Xu, Chao (1)
Larsson, Elin Maria ... (1)
Höök, Fredrik, 1966 (1)
Olsson, Eva, 1960 (1)
Albinsson, David, 19 ... (1)
Andersson, Olof (1)
Alekseeva, Svetlana, ... (1)
Fanta, A. B. D. (1)
Burrows, A. (1)
Westerlund, Fredrik, ... (1)
Baran, Derya (1)
Andersson, Mats, 196 ... (1)
Moons, Ellen, profes ... (1)
Liebi, Marianne, 198 ... (1)
Dam, Bernard (1)
Gao, Feng (1)
Erhart, Paul, 1978 (1)
Dam, B. (1)
Norder, Ben (1)
Trinh, Thu Trang (1)
Steinke, Nina Julian ... (1)
Van Well, Ad A. (1)
Bäcke, Olof, 1984 (1)
Hofmann, Anna, 1987 (1)
Campoy-Quiles, M. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (31)
Linköpings universitet (2)
Stockholms universitet (1)
Karlstads universitet (1)
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Teknik (16)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy