SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nurihun Biruk Ayalew 1983 ) "

Sökning: WFRF:(Nurihun Biruk Ayalew 1983 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nurihun, Biruk Ayalew, 1983-, et al. (författare)
  • Impact of climate and management on coffee berry disease and yield in coffee's native range
  • 2024
  • Ingår i: Basic and Applied Ecology. - 1439-1791 .- 1618-0089. ; 76, s. 25-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change might increase plant diseases, reduce crop yields and threaten the livelihoods of millions of smallholder farmers globally. It is thus important to understand the relationships between climate, disease levels and yield to improve management strategies for sustainable agroforestry in a changing climate. One of the major threats to coffee production in Africa is the coffee berry disease (Colletotrichum kahawae). To investigate the effects of climatic and management variables on coffee berry disease (CBD) incidence and yield, we recorded minimum and maximum temperature and relative humidity, as well as CBD and yield, along a broad environmental and management gradient in southwestern Ethiopia during two consecutive years. CBD was affected by several climatic and management variables. For example, CBD incidence increased with minimum temperature during the fruit expansion stage, and decreased with minimum temperature during the endosperm filling stage. CBD incidence was negatively affected by the proportion of resistant cultivars, whereas the coffee structure index (pruning) had no effect on disease incidence. Coffee yield decreased with increasing minimum temperature during the flowering period in 2018 and maximum temperature during the fruit developmental period in 2019. Coffee yield was negatively affected by canopy cover and positively affected by the coffee structure index in both years. Our findings highlight that CBD and yield were affected by different climatic and management variables. Yet, managing for low disease levels and high yield is practically difficult due to season -dependent effects of several climatic variables. One way to break the correlation of climatic variables between seasons might be to take advantage of differences among shade trees in the presence or timing of leaf drop. To reduce CBD incidence, using resistant cultivars is an effective strategy, but this might threaten the wild coffee genetic reservoir.
  •  
2.
  • Nurihun, Biruk Ayalew, 1983-, et al. (författare)
  • Impact of climate on a host-hyperparasite interaction on Arabica coffee in its native range
  • 2024
  • Ingår i: Journal of Applied Ecology. - 0021-8901 .- 1365-2664. ; 61:3, s. 538-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural enemies of plant pathogens might play an important role in controlling plant disease levels in natural and agricultural systems. Yet, plant pathogen–natural enemy interactions might be sensitive to climatic changes. Understanding the relationship between climate, plant pathogens and their natural enemies is thus important for developing climate-resilient, sustainable agriculture.To this aim, we recorded shade cover, daily minimum and maximum temperature, relative humidity, coffee leaf rust and its hyperparasite at 58 sites in southwestern Ethiopia during the dry and wet season for 2 years.Coffee leaf rust severity was positively related to the maximum temperature. Hyperparasite severity was higher when the minimum temperature was low (i.e. in places with cold night temperatures). While canopy cover did not have a direct effect on rust severity, it reduced rust severity indirectly by lowering the maximum temperature. Canopy cover had a direct positive effect on the hyperparasite severity during one surveying period.Synthesis and applications. Our findings highlight that coffee leaf rust and its hyperparasite are both affected by shade cover and temperature, but in different ways. On the one hand, these niche differences lead to the worrying prediction that levels of coffee leaf rust will increase, and its hyperparasite will decrease, with climate change. On the other hand, these niche differences between coffee leaf rust and its hyperparasite provide opportunities to develop strategies to manage the environment (such as shade cover and microclimate) in such a way that the rust is disfavoured and the hyperparasite is favoured.
  •  
3.
  • Zignol, Francesco, et al. (författare)
  • The understory microclimate in agroforestry now and in the future-a case study of Arabica coffee in its native range
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 340
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is having a major impact on crop production and food security worldwide, and particularly so for smallholder farmers. As agroforestry is common with smallholder farmers, it is important to not only model the macroclimate, but also the microclimate that crops experience below the canopies. However, there are few highresolution spatiotemporal climate projections for forest understories, because of constraints related to the lack of i) development of models for downscaling global climate projections, ii) high-resolution gridded datasets of environmental factors influencing microclimate, and iii) spatially replicated in-situ microclimate measurements. We focused on a landscape in southwestern Ethiopia where Arabica coffee originated, and, in the present day, is commonly grown as a shade crop. We first examined the relative contribution of in-situ field measurements vs. GIS-derived estimates of vegetation and topographic features in explaining in-situ microclimate. Second, we used a statistical downscaling approach to obtain past and future microclimate maps at 30-meter spatial resolution for the part of the landscape that is covered by trees. Predictive models using in-situ variables performed equal to models with GIS variables, indicating that remote sensing data might substitute for in-situ field measurements. Vegetation and topographic features were both important in explaining microclimatic variation. Our spatiotemporal projections of the microclimate indicate that coffee farming might have to relocate to higher altitudes due to increasing temperatures, that vegetation might buffer the macroclimate at middle altitudes to some extent, and that decreasing trends in relative humidity at the beginning of the wet season might become problematic for coffee production. Taken together, our findings demonstrate that we can rely on remote sensing data to create microclimate maps in landscapes where in-situ field measurements are challenging, and we suggest how these microclimate projections can be used as a tool to promote climate-resilient agriculture at the local and landscape levels.
  •  
4.
  • Ayalew Nurihun, Biruk, 1983- (författare)
  • The relationship between climate, disease and coffee yield: optimizing management for smallholder farmers
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change and diseases are threatening global crop production. Agroforestry systems, which are characterized by complex multispecies interactions, are considered to provide nature-based solutions for climate change mitigation and pest and disease regulation. Understanding the role of the abiotic environment and species interactions in shaping diseases and yield in agroforestry systems would enable us to develop effective ecologically-informed pest and disease management under a changing climate, support sustainable agricultural practices, and maximize the benefits gained from agroforestry systems. To gain such a comprehensive understanding of what shapes pest and disease levels and yield in agroforestry systems, we need to investigate how the interactions between agroforestry system components, such as trees, crops and their associated organisms, vary in space and time, and how they are influenced by abiotic factors in terms of pests and diseases and yield. In this thesis, my overarching goal was to understand how microclimate and management impact major coffee pests and diseases, their natural enemies, and coffee yield, as well as farmers’ perceptions of climate change and climate-mediated changes in disease dynamics and yield, with the aim of using these insights to optimize management decisions for smallholder farmers in southwestern Ethiopia. With this aim, I selected 58 sites along a gradient of management intensity, ranging from minimal management in the natural forest to moderate management in smallholder farms and intensive management in commercial plantations. As an approach, I combined observational and interview studies to examine i) the impact of shade tree species identity and canopy cover on coffee pests and diseases, ii) the effect of climate and management on coffee berry disease and yield, iii) the impact of climate on a host-hyperparasite interaction, and iv) farmers’ perceptions of climate change and climate-mediated changes in disease dynamics and yield. I found that tree identity affected the incidence and severity of coffee diseases, whereas insect pests were strongly affected by canopy cover, but in a species-specific way (I).  Both climate and management affected coffee berry disease and yield. Importantly, the effect of climatic variables on disease and yield differed strongly between the developmental stages from flowering to ripening (II). In chapter (III), I found that the climatic niches of coffee leaf rust and its hyperparasite differed, with coffee leaf rust severity preferring high maximum temperatures, whereas the hyperparasite preferred cold nights. The interviews revealed that the majority of farmers perceived long-term changes in one or more aspects of the climate, and the majority of farmers perceived an increase in coffee leaf rust and a decrease in coffee berry disease. Climate data also supported farmers’ knowledge on climate-disease-yield relationships (IV). Taken together, my thesis advances our understanding of the relationship between climate and management of coffee pests, diseases and yield, and this may contribute to the development of ecologically-informed pest and disease management strategies for coffee production and other agroforestry crops.
  •  
5.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: Global Ecology and Biogeography. - 1466-822X .- 1466-8238.
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important? Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next? We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
6.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
7.
  • Nurihun, Biruk Ayalew, et al. (författare)
  • The impact of shade tree species identity on coffee pests and diseases
  • 2022
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 340
  • Tidskriftsartikel (refereegranskat)abstract
    • The multifunctional role of shade trees for conservation of biodiversity and ecosystem services in natural forests and agroforests is well documented, yet we lack insights into the impact of shade tree species identity on pest and disease dynamics on agroforestry crops such as coffee and cacao, and its implications for management. We conducted two surveys on the impact of shade tree species identity and canopy cover on pests, diseases and a fungal hyperparasite on Arabica coffee in southwestern Ethiopia, which is one of the areas of origin of Arabica coffee. One survey was in a commercial plantation, and the other along a management gradient from only little managed coffee growing in the natural forest to intensively managed commercial plantations. To link these findings to current shade tree selection criteria, we complemented these surveys by interviews with farmers and managers. Shade tree species identity left a weak imprint on insect pest levels, and insect pests levels differed strongly in the strength and direction of their response to canopy cover. In contrast to the insect pests, the incidence of coffee leaf rust and its hyperparasite, as well as coffee berry disease, differed among shade tree species, with particularly high levels of coffee leaf rust and the hyperparasite underneath the canopy of the shade trees Acacia abyssinica and Croton macrostachyus, and coffee berry disease underneath the canopy of Acacia abyssinica and Polyscias fulva. Smallholder farmers used many criteria for selecting shade trees, such as leaf traits and competition for soil moisture, but low priority is given to the effect of shade tree species identity on pests and diseases. Our findings help to understand spatial variation in pest and disease dynamics in natural forests and agroforests, and may inform the selection of shade tree species by coffee producers and thereby contribute to ecologically-informed pest and disease management. Importantly, our finding highlight the potential for using tree identity for the sustainable management of pests and diseases, with relevance for global agroforestry systems.
  •  
8.
  • Nurihun, Biruk Ayalew, 1983-, et al. (författare)
  • Using local knowledge to reconstruct climate-mediated changes in disease dynamics and yield-A case study on Arabica coffee in its native range
  • 2024
  • Ingår i: Plants, People, Planet. - 2572-2611.
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact StatementAdapting agriculture to climate change requires an understanding of the long-term relationship between climate, disease dynamics, and yield. While some countries have monitored major crop diseases for decades or centuries, comparable data is scarce or non-existent for many countries that are most vulnerable to climate change. For this, a novel approach was developed to reconstruct climate-mediated changes in disease dynamics and yield. Here, a case study on Arabica coffee in its area of origin demonstrates how to combine local knowledge, climate data, and spatial field surveys to reconstruct disease and yield time series and to postulate and test hypotheses for climate-disease-yield relationships.Summary While some countries have monitored crop diseases for several decades or centuries, other countries have very limited historical time series. In such areas, we lack data on long-term patterns and drivers of disease dynamics, which is important for developing climate-resilient disease management strategies.We adopted a novel approach, combining local knowledge, climate data, and spatial field surveys to understand long-term climate-mediated changes in disease dynamics in coffee agroforestry systems. For this, we worked with 58 smallholder farmers in southwestern Ethiopia, the area of origin of Arabica coffee.The majority of farmers perceived an increase in coffee leaf rust and a decrease in coffee berry disease, whereas perceptions of changes in coffee wilt disease and Armillaria root rot were highly variable among farmers. Climate data supported farmers' understanding of the climatic drivers (increased temperature, less rainy days) of these changes. Temporal disease-climate relationships were matched by spatial disease-climate relationships, as expected with space-for-time substitution.Understanding long-term disease dynamics and yield is crucial to adapt disease management to climate change. Our study demonstrates how to combine local knowledge, climate data and spatial field surveys to reconstruct disease time series and postulate hypotheses for disease-climate relationships in areas where few long-term time series exist.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hylander, Kristoffer ... (6)
Zewdie, Beyene, 1983 ... (4)
Tack, Ayco J. M., 19 ... (4)
De Frenne, Pieter (2)
Greiser, Caroline, 1 ... (2)
Aalto, Juha (1)
visa fler...
Meineri, Eric (1)
Hylander, Kristoffer (1)
Tack, Ayco J. M. (1)
Lenoir, Jonathan (1)
Vandvik, Vigdis (1)
Börjeson, Lowe, 1968 ... (1)
Kardol, Paul (1)
Vangansbeke, Pieter (1)
Ayalew Nurihun, Biru ... (1)
Tack, Ayco J. M., Pr ... (1)
Hylander, Kristoffer ... (1)
Perfecto, Ivette, Pr ... (1)
Jucker, Tommaso (1)
Selvi, Federico (1)
Normand, Signe (1)
Beche, Dinkissa (1)
Nemomissa, Sileshi (1)
Van Meerbeek, Koenra ... (1)
Jiménez-Alfaro, Borj ... (1)
Lembrechts, Jonas J. (1)
von Oppen, Jonathan (1)
Rodríguez-Gijón, Ale ... (1)
Hedwall, Per-Ola (1)
Hespanhol, Helena (1)
Mendesil, Esayas (1)
Carnicer, Jofre (1)
Vives-Ingla, Maria (1)
Svenning, Jens-Chris ... (1)
Kjellström, Erik, 19 ... (1)
Christiansen, Ditte ... (1)
Collart, Flavien (1)
Orczewska, Anna (1)
Zellweger, Florian (1)
De Pauw, Karen (1)
Gril, Eva (1)
Hampe, Arndt (1)
De Lombaerde, Emiel (1)
Haesen, Stef (1)
Depauw, Leen (1)
Klinges, David (1)
Spicher, Fabien (1)
Máliš, František (1)
Kopecký, Martin (1)
Diaz Calafat, Joan (1)
visa färre...
Lärosäte
Stockholms universitet (8)
Göteborgs universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy