SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nyholm Anders 1985 ) "

Sökning: WFRF:(Nyholm Anders 1985 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brennan, S. J., et al. (författare)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
2.
  • Nyholm, Anders, 1985- (författare)
  • Bumpy light curves of interacting supernovae
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A supernova (SN) is the explosive destruction of a star. Via a luminous outpouring of radiation, the SN can rival the brightness of its SN host galaxy for months or years. In the past decade, astronomical surveys regularly observing the sky to deep limiting magnitudes have revealed that core collapse SNe (the demises of massive stars) are sometimes preceded by eruptive episodes by the progenitor stars during the years before the eventual SN explosion. Such SNe tend to show strong signatures of interaction between the SN ejecta and the circumstellar medium (CSM) deposited by the star before the SN explosion, likely by mass-loss episodes like the ones we have started to observe regularly. The complex CSM resolved around certain giant stars in our own galaxy and the eruptions of giant stars like η Car in the 19th century can be seen in this context. As the SN ejecta of an interacting SN sweep up the CSM of the progenitor, radiation from this process offers observers opportunity to scan the late mass loss history of the progenitor. In this thesis, interacting SNe and eruptive mass loss of their progenitors is discussed. The SN iPTF13z (discovered by the intermediate Palomar Transient Factory, iPTF) is presented. This transient was followed with optical photometry and spectroscopy during 1000 days and displayed a light curve with several conspicuous re-brigthenings ("bumps"), likely arising from SN ejecta interacting with denser regions in the CSM. Around 200 days before discovery, in archival data we found a clear precursor outburst lasting >~ 50 days. A well-observed (but not necessarily well understood) event like SN 2009ip, which showed both precursor outbursts and a light curve bump, makes an interesting comparison object. The embedding of the (possible) SN in a CSM makes it hard to tell if a destructive SN explosion actually happened. In this respect, iPTF13z is compared to e.g. SN 2009ip but also to long-lived interacting SNe like SN 1988Z. Some suggestions for future investigations are offered, to tie light curve bumps to precursor events and to clarify the question of core collapse in the ambiguous cases of some interacting SNe.
  •  
3.
  • Nyholm, Anders, 1985- (författare)
  • Supernova surroundings on circumstellar and galactic scales
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Some stars cease to be in a bright and destructive display called a supernova. This thesis explores what we can learn about supernovae (SNe) by studying their immediate surroundings, and what the SNe can teach us about their environments. The work presented is mostly based on the rich harvest of observations from 2009-2017 by the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). The PTF/iPTF was an untargeted sky survey at Palomar Observatory, aimed at finding and following up astronomical transients, such as SNe. During its existence, a massive star typically loses several solar masses of material. If much mass is lost in the decades or centuries before the SN, this material around the star (the circumstellar medium, CSM) will be quickly swept up by the ejecta of the eventual SN. This interaction can contribute strongly to the luminosity of the SN and make the light curve of an interacting SN carry signs of the progenitor star mass loss history. SNe with a hydrogen-rich CSM are called SNe Type IIn. A SN of this type, iPTF13z, found and followed by iPTF, had a slowly declining lightcurve with at least 5 major rebrightenings ("bumps") indicating rich structure in the CSM. Archival images clearly shows a precursor outburst about 210 days before the SN discovery, demonstrating the iPTF13z progenitor to be restless before its demise. Type IIn supernovae are heterogeneous, but only limited statistics has been done on samples. From PTF/iPTF, a sample of 42 SNe Type IIn was therefore selected, with photometry allowing their light curve rise times, decline rates and peak luminosities to be measured. It was shown that more luminous events are generally more long-lasting, but no strong correlation was found between rise times and peak luminosities. Two clusters of risetimes (around 20 and 50 days, respectively) were identified. The less long-lasting SNe Type IIn dominate the sample, suggesting that stars with a less extended dense CSM might be more common among SN Type IIn progenitors. Thermonuclear SNe (SNe Type Ia) are useful as standardisable candles, but no secure identification has yet been made of the progenitor system of a SN Type Ia. Using a late-time spectrum from the Nordic Optical Telescope of the nearby thermonuclear SN 2014J, a search for material ablated from a possible non-compact companion gave the upper limit of about 0.0085 solar masses of hydrogen-rich ablated gas. One likely explanation is that the SN 2014J progenitor system was a binary white dwarf. Supernovae are also useful tracers of the star formation history in their host galaxies, with SNe Type Ia tracing earlier epochs of star formation and exploding massive stars tracing more recent. For active galactic nuclei (AGN, the luminous centres of galaxies harbouring accreting supermassive black holes) SNe allows the so-called unification model to be tested. The unification model assumes that the main distinction between the two types of AGN is the viewing angle towards the central black hole, and that other properties (e.g. star formation history) of the host galaxies should be the same for the two AGN types. Matching 2190 SNe from PTF/iPTF to about 89000 AGN with spectra from the Sloan Digital Sky Survey, a significantly higher number of SNe in the hosts of AGN type 2 was found, challenging the unification model.
  •  
4.
  • Nyholm, Anders, 1985-, et al. (författare)
  • The bumpy light curve of Type IIn supernova iPTF13z over 3 years
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • A core-collapse (CC) supernova (SN) of Type IIn is dominated by the interaction of SN ejecta with the circumstellar medium (CSM). Some SNe IIn (e.g. SN 2006jd) have episodes of re-brightening (''bumps'') in their light curves. We present iPTF13z, a Type IIn SN discovered on 2013 February 1 by the intermediate Palomar Transient Factory (iPTF). This SN showed at least five bumps in its declining light curve between 130 and 750 days after discovery. We analyse this peculiar behaviour and try to infer the properties of the CSM, of the SN explosion, and the nature of the progenitor star. We obtained multi-band optical photometry for over 1000 days after discovery with the P48 and P60 telescopes at Palomar Observatory. We obtained low-resolution optical spectra during the same period. We did an archival search for progenitor outbursts. We analyse the photometry and the spectra, and compare iPTF13z to other SNe IIn. In particular we derive absolute magnitudes, colours, a pseudo-bolometric light curve, and the velocities of the different components of the spectral lines. A simple analytical model is used to estimate the properties of the CSM. iPTF13z had a light curve peaking at Mr <~ -18.3 mag. The five bumps during its decline phase had amplitudes ranging from 0.4 to 0.9 mag and durations between 20 and 120 days. The most prominent bumps appeared in all the different optical bands, when covered. The spectra of this SN showed typical SN IIn characteristics, with emission lines of Hα (with broad component FWHM ~ 103 - 104 km s-1 and narrow component FWHM ~ 102 km s-1) and He I, but also with Fe II, Ca II, Na I D and Hβ P Cygni profiles (with velocities of ~ 103 km  s-1). A pre-explosion outburst was identified lasting >~ 50 days, with Mr  -15 mag around 210 days before discovery. Large, variable progenitor mass-loss rates (>~ 0.01 MSun yr-1) and CSM densities (>~ 10-16 g cm-3) are derived. The SN was hosted by a metal-poor dwarf galaxy at redshift z = 0.0328. We suggest that the light curve bumps of iPTF13z arose from SN ejecta interacting with denser regions in the CSM, possibly produced by the eruptions of a luminous blue variable progenitor star.
  •  
5.
  • Nyholm, Anders, 1985-, et al. (författare)
  • Type IIn supernova light-curve properties measured from an untargeted survey sample
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of a Type IIn supernova (SN IIn) is governed by the interaction between the SN ejecta and a hydrogen-rich circumstellar medium. The SNe IIn thus allow us to probe the late-time mass-loss history of their progenitor stars. We present a sample of SNe IIn from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). To date, statistics on SN IIn optical light-curve properties have generally been based on small (≲ 10 SNe) samples from targeted SN surveys. The SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We study the peak-magnitude distribution, rise times, decline rates, colour evolution, host galaxies, and K-corrections of the SNe in our sample. We find that the typical rise times are divided into fast and slow risers at 20±6 d and 50±11 d, respectively. The decline rates are possibly divided into two clusters (with slopes 0.013 ± 0.006 mag d^-1 and 0.040±0.010 mag d^-1), but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude -22 ≲ M_g ≲ -13 mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observer's frame r-band, for SNe at redshifts z < 0.25. By applying K-corrections and also including ostensibly "superluminous" SNe IIn, we find that the peak magnitudes are M_peak^r = -19.18±1.32 mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to 1.4+14.6−1.0 % of the SNe IIn. We also investigate a possible sub-type of SNe IIn with a fast rise to a ≳ 50 d plateau followed by a slow, linear decline.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy