SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'Rourke Joseph G.) "

Sökning: WFRF:(O'Rourke Joseph G.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Gillmann, Cedric, et al. (författare)
  • The Long-Term Evolution of the Atmosphere of Venus : Processes and Feedback Mechanisms Interior-Exterior Exchanges
  • 2022
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 218:7
  • Forskningsöversikt (refereegranskat)abstract
    • This work reviews the long-term evolution of the atmosphere of Venus, and modulation of its composition by interior/exterior cycling. The formation and evolution of Venus's atmosphere, leading to contemporary surface conditions, remain hotly debated topics, and involve questions that tie into many disciplines. We explore these various inter-related mechanisms which shaped the evolution of the atmosphere, starting with the volatile sources and sinks. Going from the deep interior to the top of the atmosphere, we describe volcanic outgassing, surface-atmosphere interactions, and atmosphere escape. Furthermore, we address more complex aspects of the history of Venus, including the role of Late Accretion impacts, how magnetic field generation is tied into long-term evolution, and the implications of geochemical and geodynamical feedback cycles for atmospheric evolution. We highlight plausible end-member evolutionary pathways that Venus could have followed, from accretion to its present-day state, based on modeling and observations. In a first scenario, the planet was desiccated by atmospheric escape during the magma ocean phase. In a second scenario, Venus could have harbored surface liquid water for long periods of time, until its temperate climate was destabilized and it entered a runaway greenhouse phase. In a third scenario, Venus's inefficient outgassing could have kept water inside the planet, where hydrogen was trapped in the core and the mantle was oxidized. We discuss existing evidence and future observations/missions required to refine our understanding of the planet's history and of the complex feedback cycles between the interior, surface, and atmosphere that have been operating in the past, present or future of Venus.
  •  
4.
  • O'Rourke, Joseph G., et al. (författare)
  • Venus, the Planet : Introduction to the Evolution of Earth's Sister Planet
  • 2023
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 219:1
  • Forskningsöversikt (refereegranskat)abstract
    • Venus is the planet in the Solar System most similar to Earth in terms of size and (probably) bulk composition. Until the mid-20th century, scientists thought that Venus was a verdant world-inspiring science-fictional stories of heroes battling megafauna in sprawling jungles. At the start of the Space Age, people learned that Venus actually has a hellish surface, baked by the greenhouse effect under a thick, CO2-rich atmosphere. In popular culture, Venus was demoted from a jungly playground to (at best) a metaphor for the redemptive potential of extreme adversity. However, whether Venus was much different in the past than it is today remains unknown. In this review, we show how now-popular models for the evolution of Venus mirror how the scientific understanding of modern Venus has changed over time. Billions of years ago, Venus could have had a clement surface with water oceans. Venus perhaps then underwent at least one dramatic transition in atmospheric, surface, and interior conditions before present day. This review kicks off a topical collection about all aspects of Venus's evolution and how understanding Venus can teach us about other planets, including exoplanets. Here we provide the general background and motivation required to delve into the other manuscripts in this collection. Finally, we discuss how our ignorance about the evolution of Venus motivated the prioritization of new spacecraft missions that will rediscover Earth's nearest planetary neighbor-beginning a new age of Venus exploration.
  •  
5.
  • Widemann, Thomas, et al. (författare)
  • Venus Evolution Through Time : Key Science Questions, Selected Mission Concepts and Future Investigations
  • 2023
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus' atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL's VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC's DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet's long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy