SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ogawa Kazunori) "

Sökning: WFRF:(Ogawa Kazunori)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yabuta, Hikaru, et al. (författare)
  • Macromolecular organic matter in samples of the asteroid (162173) Ryugu
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 379:6634
  • Tidskriftsartikel (refereegranskat)abstract
    • Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugus parent body.
  •  
2.
  • Akiyama, Kazunori, et al. (författare)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
3.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
4.
  • Lu, R.S., et al. (författare)
  • A ring-like accretion structure in M87 connecting its black hole and jet
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 616:7958, s. 686-690
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.
  •  
5.
  • Michikami, Tatsuhiro, et al. (författare)
  • Three-axial shape distributions of pebbles, cobbles and boulders smaller than a few meters on asteroid Ryugu
  • 2022
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 381
  • Tidskriftsartikel (refereegranskat)abstract
    • Over a broad size range, the shapes of impact fragments from catastrophic disruptions are distributed around the mean axial ratio 2: √2: 1, irrespective of experimental conditions and target materials. Although most blocks on asteroids are likely to be impact fragments, there is not enough quantitative data for reliable statistics on their three-axial lengths and/or ratios because it is difficult to precisely estimate the heights of the blocks. In this study, we evaluate the heights of blocks on asteroid Ryugu by measuring their shadows. The three-axial ratios of ~4100 small blocks with diameters from 5.0 cm to 7.6 m in Ryugu's equatorial region are investigated using eight close-up images of narrower localities taken at altitudes below 500 m, i.e. at <5.4 cm/pixel resolution, obtained immediately before the second touch-down of the Hayabusa2 spacecraft. The purpose of this study is to investigate the block shape distribution, which is important for understanding the geological history of asteroid Ryugu. Specifically, the shape distribution is compared to laboratory impact fragments. Our observations indicate that the shape distributions of blocks smaller than 1 m on Ryugu are consistent with laboratory impact fragment shape distributions, implying that the dominant shape-determining process for blocks on Ryugu was impact fragmentation. Blocks several meters in size in the equatorial region seem to be slightly flatter than the rest, suggesting that some blocks are partly buried in a bed of regolith. In conclusion, the shape distributions of blocks from several-cm to several-m in the equatorial region of asteroid Ryugu suggest that these are mainly fragments originating from the catastrophic disruption of their parent body and/or from a later impact.
  •  
6.
  • Moore, Alexander, et al. (författare)
  • Penetrometry in Microgravity- From Brie to Bennu
  • 2022
  • Ingår i: EPSC Abstracts Vol. 16, 2022. - : Copernicus GmbH.
  • Konferensbidrag (refereegranskat)abstract
    • In this abstract we discuss a proposal for a microgravity flight campaign within which we will investigate penetrometry in a microgravity environment. Understanding the mechanical properties of solar system minor bodies is essential for understanding their origin and evolution. Past missions such as Hayabusa-2 and OSIRIS-REX have landed on asteroids and taken samples to discover what these bodies are made of. However, there has been conflicting evidence and reports into the physical properties of the granular surface material of these bodies. With future missions such as JAXA’s MMX mission travelling to Phobos to take a sample of the body the results from this campaign will be very important to that and future missions. Penetrometry, i.e. the determination of the reaction force an object experiences as it penetrates into a surface, can help to understand the essential properties regarding regolith such as grain size, grain shape, cohesion and bulk density. The usage of penetrometry however has mostly been limited ground-based studies such as soil sciences or even cheese maturation. Very little is known about the underlying physics of penetrometry. Results of penetrometry experiments are largely analysed based on empirical models, which presents us with a challenge if we want to apply the same parameters to understand granular materials on asteroid surfaces. Obviously, gravity cannot be eliminated in the laboratory. Hence, it is essential to verify penetrometry as a method and validate penetrometry instrument designs in microgravity.For this purpose, we propose a parabolic flight campaign. Our experiment will test the use of penetrometry in asteroid-analogue environments by investigating samples with varying properties such as grain size and shape. The microgravity aspect of the experiment is one of the most important factors because it enables us to correlate laboratory experiments at 1g with identical setups in a gravity regime relevant to asteroids. The proposed experimental setup will include a variety of samples with varying grain sizes, grain shapes, porosities and grain size distributions. The penetrometer used will also have varying properties such as the diameter, shape, and velocity of penetration. A robotic arm will push a penetrometer into the samples to measure the reaction force which can then be used to determine the mechanical properties of the samples. By varying the samples and penetrometer properties it will be possible to better understand the relevant parameters affecting reaction force. The suitability of the setup will also be reviewed to understand its usage and applicability in microgravity environments such as the robotic arm that will be used. All of the experiments carried out during the parabolic campaign will also be done at 1g to compare the tests in varying gravity levels. With a better understanding of the science behind penetrometry and the effects of microgravity, future missions will be better prepared and be able to use penetrometry more effectively to understand small-body surfaces.
  •  
7.
  • Nomiya, Shigenobu, et al. (författare)
  • Appearance and distribution of two Ca2+-binding proteins during development of the cochlea in the musk shrew
  • 1998
  • Ingår i: Developmental Brain Research. - 0165-3806 .- 1872-6755. ; 110:1, s. 7-19
  • Tidskriftsartikel (refereegranskat)abstract
    • In the developing cochlea of the musk shrew, Suncus murinus, the localization of two Ca2+-binding protein, calbindin and calmodulin, which are thought to play different roles in the nervous system, was examined during gestational and postpartum periods. Calbindin is thought to play a Ca2+ buffering role, while calmodulin activates other proteins. Cochleae from the musk shrews sacrificed from gestational day (GD) 15 to postnatal day (PP) 9 and as adults, were immunohistochemically analyzed. The localization and order of appearance of calmodulin in sensorineural elements were similar to those of calbindin, except for timing of appearance. Calmodulin-staining was recognized first in the spiral ganglion neurons on GD21, followed by the inner hair cells (IHCs) on GD23 and outer hair cells (OHCs) on GD26, while calbindin immunoreactivity in the spiral ganglion neurons on GD19, the IHCs on GD21 and the OHCs on GD23. In hair cells, during development, immunostaining of calbindin and calmodulin was initially seen in the cytoplasm, followed by the cuticular plate. Cytoplasmic staining then decreased in mature hair cells. Non-sensorineural components also showed positivity for both calbindin and calmodulin. The lateral wall of the cochlear duct was positive for calbindin, while the stria vascularis was positive for calmodulin. Immunoreactivity for calbindin was present earlier than that of calmodulin in sensorineural elements, suggesting that in the developing cochlea, calbindin and calmodulin have different functions and that Ca2+ buffering capacity, which is regulated by Ca2+ buffer proteins, such as calbindin, may be required before trigger proteins, such as calmodulin, function.
  •  
8.
  • Zeichner, Sarah S., et al. (författare)
  • Polycyclic aromatic hydrocarbons in samples of Ryugu formed in the interstellar medium
  • 2023
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 382:6677, s. 1411-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycyclic aromatic hydrocarbons (PAHs) contain less than or similar to 20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures greater than or similar to 1000 kelvin), by (similar to 10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly-C-13 substituted compositions (Delta 2x(13)C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51 parts per thousand higher than values expected for a stochastic distribution of isotopes. The Delta 2x(13)C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Delta 2x(13)C values consistent with formation by higher-temperature reactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy