SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ogden Rob) "

Sökning: WFRF:(Ogden Rob)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bertola, Laura D., et al. (författare)
  • A pragmatic approach for integrating molecular tools into biodiversity conservation
  • 2024
  • Ingår i: Conservation science and practice. - 2578-4854. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular tools are increasingly applied for assessing and monitoring biodiversity and informing conservation action. While recent developments in genetic and genomic methods provide greater sensitivity in analysis and the capacity to address new questions, they are not equally available to all practitioners: There is considerable bias across institutions and countries in access to technologies, funding, and training. Consequently, in many cases, more accessible traditional genetic data (e.g., microsatellites) are still utilized for making conservation decisions. Conservation approaches need to be pragmatic by tackling clearly defined management questions and using the most appropriate methods available, while maximizing the use of limited resources. Here we present some key questions to consider when applying the molecular toolbox for accessible and actionable conservation management. Finally, we highlight a number of important steps to be addressed in a collaborative way, which can facilitate the broad integration of molecular data into conservation. Molecular tools are increasingly applied in conservation management; however, they are not equally available to all practitioners. We here provide key questions when establishing a conservation genetic study and highlight important steps which need to be addressed when these tools are globally applied.image
  •  
2.
  • Hoban, Sean, et al. (författare)
  • Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework
  • 2023
  • Ingår i: Conservation Genetics. - : Springer Science and Business Media LLC. - 1566-0621 .- 1572-9737. ; 24:2, s. 181-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity among and within populations of all species is necessary for people and nature to survive and thrive in a changing world. Over the past three years, commitments for conserving genetic diversity have become more ambitious and specific under the Convention on Biological Diversity’s (CBD) draft post-2020 global biodiversity framework (GBF). This Perspective article comments on how goals and targets of the GBF have evolved, the improvements that are still needed, lessons learned from this process, and connections between goals and targets and the actions and reporting that will be needed to maintain, protect, manage and monitor genetic diversity. It is possible and necessary that the GBF strives to maintain genetic diversity within and among populations of all species, to restore genetic connectivity, and to develop national genetic conservation strategies, and to report on these using proposed, feasible indicators.
  •  
3.
  • Hoban, Sean, et al. (författare)
  • Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved
  • 2020
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207 .- 1873-2917. ; 248
  • Tidskriftsartikel (refereegranskat)abstract
    • The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable development and benefit sharing. As the most significant global conservation policy mechanism, the new CBD framework has far-reaching consequences- it will guide conservation actions and reporting for each member country until 2050. In previous CBD strategies, as well as other major conservation policy mechanisms, targets and indicators for genetic diversity (variation at the DNA level within species, which facilitates species adaptation and ecosystem function) were undeveloped and focused on species of agricultural relevance. We assert that, to meet global conservation goals, genetic diversity within all species, not just domesticated species and their wild relatives, must be conserved and monitored using appropriate metrics. Building on suggestions in a recent Letter in Science (Laikre et al., 2020) we expand argumentation for three new, pragmatic genetic indicators and modifications to two current indicators for maintaining genetic diversity and adaptive capacity of all species, and provide guidance on their practical use. The indicators are: 1) the number of populations with effective population size above versus below 500, 2) the proportion of populations maintained within species, 3) the number of species and populations in which genetic diversity is monitored using DNA-based methods. We also present and discuss Goals and Action Targets for post-2020 biodiversity conservation which are connected to these indicators and underlying data. These pragmatic indicators and goals have utility beyond the CBD; they should benefit conservation and monitoring of genetic diversity via national and global policy for decades to come.
  •  
4.
  • Hoban, Sean, et al. (författare)
  • Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible
  • 2021
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 71:9, s. 964-976
  • Tidskriftsartikel (refereegranskat)abstract
    • Global conservation policy and action have largely neglected protecting and monitoring genetic diversity-one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species' adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers. However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts. We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity.
  •  
5.
  • Hoban, Sean, et al. (författare)
  • Too simple, too complex, or just right? Advantages, challenges, and guidance for indicators of genetic diversity
  • 2024
  • Ingår i: BioScience. - 0006-3568 .- 1525-3244.
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring genetic diversity of wild species using DNA-based data remains resource intensive and time consuming for nearly all species. However, genetic assessments are needed for global conservation commitments, including the Convention on Biological Diversity, and for governments and managers to evaluate conservation progress, as well as prioritizing species and populations to preserve and recover genetic diversity (e.g., via genetic rescue). Recently, indicators were developed for tracking and reporting genetic diversity status and trends for hundreds of species. The indicators quantify two simple proxies of within-population and among-population genetic diversity and adaptive potential: small effective population size (Ne < 500) and the loss of genetically distinct populations. The indicators must balance scientific credibility, practicality, and simplicity. In the present article, we summarize the advantages of these pragmatic indicators, address critiques by scientists for simplifying assumptions and by policymakers for complexity, and propose potential solutions and next steps. We aim to support practitioners putting indicators into policy, action, legislation, and reporting.
  •  
6.
  • Hosegood, Jane, et al. (författare)
  • Phylogenomics and species delimitation for effective conservation of manta and devil rays
  • 2020
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 29:24, s. 4783-4796
  • Tidskriftsartikel (refereegranskat)abstract
    • Practical biodiversity conservation relies on delineation of biologically meaningful units. Manta and devil rays (Mobulidae) are threatened worldwide, yet morphological similarities and a succession of recent taxonomic changes impede the development of an effective conservation strategy. Here, we generate genome-wide single nucleotide polymorphism (SNP) data from a geographically and taxonomically representative set of manta and devil ray samples to reconstruct phylogenetic relationships and evaluate species boundaries under the general lineage concept. We show that nominal species units supported by alternative data sources constitute independently evolving lineages, and find robust evidence for a putative new species of manta ray in the Gulf of Mexico. Additionally, we uncover substantial incomplete lineage sorting indicating that rapid speciation together with standing variation in ancestral populations has driven phylogenetic uncertainty within Mobulidae. Finally, we detect cryptic diversity in geographically distinct populations, demonstrating that management below the species level may be warranted in certain species. Overall, our study provides a framework for molecular genetic species delimitation that is relevant to wide-ranging taxa of conservation concern, and highlights the potential for genomic data to support effective management, conservation and law enforcement strategies.
  •  
7.
  • Kershaw, Francine, et al. (författare)
  • The Coalition for Conservation Genetics : Working across organizations to build capacity and achieve change in policy and practice
  • 2022
  • Ingår i: Conservation Science and Practice. - : Wiley. - 2578-4854. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Coalition for Conservation Genetics (CCG) brings together four eminent organizations with the shared goal of improving the integration of genetic information into conservation policy and practice. We provide a historical context of conservation genetics as a field and reflect on current barriers to conserving genetic diversity, highlighting the need for collaboration across traditional divides, international partnerships, and coordinated advocacy. We then introduce the CCG and illustrate through examples how a coalition approach can leverage complementary expertise and improve the organizational impact at multiple levels. The CCG has proven particularly successful at implementing large synthesis-type projects, training early-career scientists, and advising policy makers. Achievements to date highlight the potential for the CCG to make effective contributions to practical conservation policy and management that no one “parent” organization could achieve on its own. Finally, we reflect on the lessons learned through forming the CCG, and our vision for the future.
  •  
8.
  • O'Brien, David, et al. (författare)
  • Bringing together approaches to reporting on within species genetic diversity
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59:9, s. 2227-2233
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity is one of the three main levels of biodiversity recognised in the Convention on Biological Diversity (CBD). Fundamental for species adaptation to environmental change, genetic diversity is nonetheless under-reported within global and national indicators. When it is reported, the focus is often narrow and confined to domesticated or other commercial species.Several approaches have recently been developed to address this shortfall in reporting on genetic diversity of wild species. While multiplicity of approaches is helpful in any development process, it can also lead to confusion among policy makers and heighten a perception that conservation genetics is too abstract to be of use to organisations and governments.As the developers of five of the different approaches, we have come together to explain how various approaches relate to each other and propose a scorecard, as a unifying reporting mechanism for genetic diversity.Policy implications. We believe the proposed combined approach captures the strengths of its components and is practical for all nations and subnational governments. It is scalable and can be used to evaluate species conservation projects as well as genetic conservation projects.
  •  
9.
  • Pomerantz, Aaron, et al. (författare)
  • Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment
  • 2022
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1754-2189 .- 1750-2799. ; 17:6, s. 1415-1443
  • Tidskriftsartikel (refereegranskat)abstract
    • In many parts of the world, human-mediated environmental change is depleting biodiversity faster than it can be characterized, while invasive species cause agricultural damage, threaten human health and disrupt native habitats. Consequently, the application of effective approaches for rapid surveillance and identification of biological specimens is increasingly important to inform conservation and biosurveillance efforts. Taxonomic assignments have been greatly advanced using sequence-based applications, such as DNA barcoding, a diagnostic technique that utilizes PCR and DNA sequence analysis of standardized genetic regions. However, in many biodiversity hotspots, endeavors are often hindered by a lack of laboratory infrastructure, funding for biodiversity research and restrictions on the transport of biological samples. A promising development is the advent of low-cost, miniaturized scientific equipment. Such tools can be assembled into functional laboratories to carry out genetic analyses in situ, at local institutions, field stations or classrooms. Here, we outline the steps required to perform amplicon sequencing applications, from DNA isolation to nanopore sequencing and downstream data analysis, all of which can be conducted outside of a conventional laboratory environment using miniaturized scientific equipment, without reliance on Internet connectivity. Depending on sample type, the protocol (from DNA extraction to full bioinformatic analyses) can be completed within 10 h, and with appropriate quality controls can be used for diagnostic identification of samples independent of core genomic facilities that are required for alternative methods. 
  •  
10.
  • Shafer, Aaron B. A., et al. (författare)
  • Genomics and the challenging translation into conservation practice
  • 2015
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383. ; 30:2, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain challenging and largely confined to academic research in ecology and evolution. This generates a gap between basic research and applicable solutions for conservation managers faced with multifaceted problems. Before the real-world conservation potential of genomic research can be realized, we suggest that current infrastructures need to be modified, methods must mature, analytical pipelines need to be developed, and successful case studies must be disseminated to practitioners.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
O’Brien, David (7)
Hoban, Sean (7)
Bruford, Michael W. (6)
Kershaw, Francine (6)
Hunter, Margaret E. (6)
Laikre, Linda, 1960- (5)
visa fler...
Macdonald, Anna J. (5)
Grueber, Catherine E ... (5)
Mergeay, Joachim (4)
Laikre, Linda (2)
Ekblom, Robert (2)
Sjögren-Gulve, Per (2)
Bertola, Laura D. (2)
de Bruyn, Mark (2)
Frankham, Richard (2)
Hohenlohe, Paul A. (2)
Lacy, Robert C. (2)
Bloomer, Paulette (1)
Wolf, Jochen B. W. (1)
Abudaya, Mohammed (1)
Salah, Jehad (1)
Fernando, Daniel (1)
Piccolo, John, 1964- (1)
Jones, Mark (1)
Wheat, Christopher W ... (1)
Barnett, Ross (1)
Larson, Greger (1)
Dalen, Love (1)
Wennerström, Lovisa (1)
Olsson, Ola (1)
Ardalan, Arman (1)
Prost, Stefan (1)
Höglund, Jacob (1)
Creer, Simon (1)
Kennedy, Susan (1)
Krehenwinkel, Henrik (1)
Primmer, Craig R. (1)
Krause, Johannes (1)
Guayasamin, Juan M. (1)
Paez-Vacas, Monica (1)
Brueniche-Olsen, Ann ... (1)
Russo, Isa-Rita M. (1)
Sunnucks, Paul (1)
Cadena, Carlos Danie ... (1)
Ewart, Kyle M. (1)
Eldridge, Mark D. B. (1)
Hoareau, Thierry B. (1)
Kotze, Antoinette (1)
Kuja, Josiah (1)
Lo, Nathan (1)
visa färre...
Lärosäte
Stockholms universitet (9)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Lunds universitet (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
visa fler...
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy