SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oghbaie Shabnam) "

Sökning: WFRF:(Oghbaie Shabnam)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oghbaie, Shabnam (författare)
  • Dissociation dynamics of highly excited molecules: Theory and Experiment
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents studies on dissociation of two model molecules: Butadiene and Cyclopropane. Tunable synchrotron radiation was used to ionize or excite the molecules in the gas phase, and the momentum correlation of the resulting fragment ions were measured using a 3D momenta coincident ion spectroscopy. The experimental results were interpreted with the aid of ab-initio quantum calculation. This allows us to gain insight into the fundamental processes behind the molecular dissociation, that how correlated electronic and nuclear dynamics drive molecular dissociation.Tunable XUV-radiation was used to doubly ionize molecules to different states.By Comparing experimental and theoretical values for appearance energy and kinetic energy released of the dissociation channels, electronic gateway state of each dissociation channels were identified. By analysing the momentum vector of ion pairs as a function of photon energy and internal energy sharing in the dissociative double ionization channels, mechanisms of double ionization (direct or indirect) processes were investigated. The studies shed light on the electron-electron and electron-nuclear correlation effects in the molecules.Tunable X-rays were used to selectively excite a localized core electron to different valence orbitals, and the subsequent autoionization and dissociation processes were studied by analysing the correlated momentum of ionic fragments. In butadiene, the dependence of molecular dissociation on the initial site of core-hole was studied for the chemically shifted terminal and central carbon core-electrons excitation.In cyclopropane the dependence of molecular dissociation on the changing of the molecular bonding character was studied for different core-to-valence excitation.The studies indicated the importance of the ultra-fast nuclear dynamics initiatedwithin a few femtosecond core-hole lifetime changing the picture of electron-electron correlation in autoionization processes and leading to specific dissociation channels.
  •  
2.
  • Oghbaie, Shabnam, et al. (författare)
  • Dissociation of cyclopropane in double ionization continuum
  • 2017
  • Ingår i: Physical chemistry chemical physics : PCCP. - 1463-9084. ; 19:30, s. 19631-19639
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociative double photoionization of cyclopropane is studied in the inner-valence region using tunable synchrotron radiation. With the aid of ab initio quantum chemical calculations the energies of dication states and their favoured fragmentation pathways are determined. These are compared to the experimental appearance energies of two-body fragmentation processes and to the kinetic energy released upon dissociation. Photon energy dependent state-selective dissociation in the 25–35 eV range is found. Calculations of dissociation pathways suggest that cyclopropane ring-deformation is selectively triggered at certain photon energies. The calculations suggest that initial ring deformation essentially determines the population of different dication states that function as gateways for particular dissociation channels. The measurements show that stepwise ionization processes populate dissociative 3e′−2 states via ring-opening and Jahn–Teller active states at photon energies below the double-ionization threshold. For energies above the double-ionization threshold the kinematics indicate that double ionization takes place predominantly within the Franck–Condon region populating 3e′−1 1e′′−1 states.
  •  
3.
  • Oghbaie, Shabnam, et al. (författare)
  • Dissociation of cyclopropane in double ionization continuum
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 19:30, s. 19631-19639
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociative double photoionization of cyclopropane is studied in the inner-valence region using tunable synchrotron radiation. With the aid of ab initio quantum chemical calculations the energies of dication states and their favoured fragmentation pathways are determined. These are compared to the experimental appearance energies of two-body fragmentation processes and to the kinetic energy released upon dissociation. Photon energy dependent state-selective dissociation in the 25-35 eV range is found. Calculations of dissociation pathways suggest that cyclopropane ring-deformation is selectively triggered at certain photon energies. The calculations suggest that initial ring deformation essentially determines the population of different dication states that function as gateways for particular dissociation channels. The measurements show that stepwise ionization processes populate dissociative 3e'(-2) states via ring-opening and Jahn-Teller active states at photon energies below the double-ionization threshold. For energies above the double-ionization threshold the kinematics indicate that double ionization takes place predominantly within the Franck-Condon region populating 3e'(-1) 1e ''(-1) states.
  •  
4.
  • Oghbaie, Shabnam, et al. (författare)
  • Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry
  • 2015
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 143:11, s. 114309-114309
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation.
  •  
5.
  •  
6.
  • Walsh, Noelle, et al. (författare)
  • Molecular dynamics of NH3 induced by core-electron excitation
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:29, s. 18944-18952
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear motion in the N1s(-1)4a(1)(1) core-excited state of ammonia is investigated by studying the angular anisotropy of fragments produced in the decay of the highly excited molecule and compared with predictions from ab initio calculations. Two different fragmentation channels (H+/NH2+ and H+/NH+/H) reveal complex nuclear dynamics as the excitation photon energy is tuned through the 4a(1) resonance. The well-defined angular anisotropy of the fragments produced in the dissociation of the molecular dication species suggests a very rapid nuclear motion and the time scale of the nuclear dynamics is limited to the low fs timescale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy